2,507 research outputs found

    Decay of Correlations for Sparse Graph Error Correcting Codes

    Get PDF
    The subject of this paper is transmission over a general class of binary-input memoryless symmetric channels using error correcting codes based on sparse graphs, namely low-density generator-matrix and low-density parity-check codes. The optimal (or ideal) decoder based on the posterior measure over the code bits, and its relationship to the sub-optimal belief propagation decoder, are investigated. We consider the correlation (or covariance) between two codebits, averaged over the noise realizations, as a function of the graph distance, for the optimal decoder. Our main result is that this correlation decays exponentially fast for fixed general low-density generator-matrix codes and high enough noise parameter, and also for fixed general low-density parity-check codes and low enough noise parameter. This has many consequences. Appropriate performance curves - called GEXIT functions - of the belief propagation and optimal decoders match in high/low noise regimes. This means that in high/low noise regimes the performance curves of the optimal decoder can be computed by density evolution. Another interpretation is that the replica predictions of spin-glass theory are exact. Our methods are rather general and use cluster expansions first developed in the context of mathematical statistical mechanics.Comment: 40 pages, Submitted to SIAM Journal of Discrete Mathematic

    Duality and free energy analyticity bounds for few-body Ising models with extensive homology rank

    Get PDF
    We consider pairs of few-body Ising models where each spin enters a bounded number of interaction terms (bonds) such that each model can be obtained from the dual of the other after freezing k spins on large-degree sites. Such a pair of Ising models can be interpreted as a two-chain complex with k being the rank of the first homology group. Our focus is on the case where k is extensive, that is, scales linearly with the number of bonds n. Flipping any of these additional spins introduces a homologically nontrivial defect (generalized domain wall). In the presence of bond disorder, we prove the existence of a low-temperature weak-disorder region where additional summation over the defects has no effect on the free energy density f(T) in the thermodynamical limit and of a high-temperature region where an extensive homological defect does not affect f(T). We also discuss the convergence of the high- and low-temperature series for the free energy density, prove the analyticity of limiting f(T) at high and low temperatures, and construct inequalities for the critical point(s) where analyticity is lost. As an application, we prove multiplicity of the conventionally defined critical points for Ising models on all { f, d} tilings of the infinite hyperbolic plane, where df/(d + f) \u3e 2. Namely, for these infinite graphs, we show that critical temperatures with free and wired boundary conditions differ, Tc(f)T(f)

    Modern Coding Theory: The Statistical Mechanics and Computer Science Point of View

    Full text link
    These are the notes for a set of lectures delivered by the two authors at the Les Houches Summer School on `Complex Systems' in July 2006. They provide an introduction to the basic concepts in modern (probabilistic) coding theory, highlighting connections with statistical mechanics. We also stress common concepts with other disciplines dealing with similar problems that can be generically referred to as `large graphical models'. While most of the lectures are devoted to the classical channel coding problem over simple memoryless channels, we present a discussion of more complex channel models. We conclude with an overview of the main open challenges in the field.Comment: Lectures at Les Houches Summer School on `Complex Systems', July 2006, 44 pages, 25 ps figure

    Quantum computing and the entanglement frontier - Rapporteur talk at the 25th Solvay Conference

    Get PDF
    Quantum information science explores the frontier of highly complex quantum states, the "entanglement frontier". This study is motivated by the observation (widely believed but unproven) that classical systems cannot simulate highly entangled quantum systems efficiently, and we hope to hasten the day when well controlled quantum systems can perform tasks surpassing what can be done in the classical world. One way to achieve such "quantum supremacy" would be to run an algorithm on a quantum computer which solves a problem with a super-polynomial speedup relative to classical computers, but there may be other ways that can be achieved sooner, such as simulating exotic quantum states of strongly correlated matter. To operate a large scale quantum computer reliably we will need to overcome the debilitating effects of decoherence, which might be done using "standard" quantum hardware protected by quantum error-correcting codes, or by exploiting the nonabelian quantum statistics of anyons realized in solid state systems, or by combining both methods. Only by challenging the entanglement frontier will we learn whether Nature provides extravagant resources far beyond what the classical world would allow

    Sharp Bounds for Optimal Decoding of Low Density Parity Check Codes

    Full text link
    Consider communication over a binary-input memoryless output-symmetric channel with low density parity check (LDPC) codes and maximum a posteriori (MAP) decoding. The replica method of spin glass theory allows to conjecture an analytic formula for the average input-output conditional entropy per bit in the infinite block length limit. Montanari proved a lower bound for this entropy, in the case of LDPC ensembles with convex check degree polynomial, which matches the replica formula. Here we extend this lower bound to any irregular LDPC ensemble. The new feature of our work is an analysis of the second derivative of the conditional input-output entropy with respect to noise. A close relation arises between this second derivative and correlation or mutual information of codebits. This allows us to extend the realm of the interpolation method, in particular we show how channel symmetry allows to control the fluctuations of the overlap parameters.Comment: 40 Pages, Submitted to IEEE Transactions on Information Theor

    Duality and free energy analyticity bounds for few-body Ising models with extensive homology rank

    Get PDF
    We consider pairs of few-body Ising models where each spin enters a bounded number of interaction terms (bonds), such that each model can be obtained from the dual of the other after freezing kk spins on large-degree sites. Such a pair of Ising models can be interpreted as a two-chain complex with kk being the rank of the first homology group. Our focus is on the case where kk is extensive, that is, scales linearly with the number of bonds nn. Flipping any of these additional spins introduces a homologically non-trivial defect (generalized domain wall). In the presence of bond disorder, we prove the existence of a low-temperature weak-disorder region where additional summation over the defects have no effect on the free energy density f(T)f(T) in the thermodynamical limit, and of a high-temperature region where in the ferromagnetic case an extensive homological defect does not affect f(T)f(T). We also discuss the convergence of the high- and low-temperature series for the free energy density, prove the analyticity of limiting f(T)f(T) at high and low temperatures, and construct inequalities for the critical point(s) where analyticity is lost. As an application, we prove multiplicity of the conventionally defined critical points for Ising models on all {f,d}\{f,d\} tilings of the hyperbolic plane, where df/(d+f)>2df/(d+f)>2. Namely, for these infinite graphs, we show that critical temperatures with free and wired boundary conditions differ, Tc(f)<Tc(w)T_c^{(\mathrm{f})}<T_c^{(\mathrm{w})}.Comment: 18 pages, 6 figure

    Belief propagation decoding of quantum channels by passing quantum messages

    Full text link
    Belief propagation is a powerful tool in statistical physics, machine learning, and modern coding theory. As a decoding method, it is ubiquitous in classical error correction and has also been applied to stabilizer-based quantum error correction. The algorithm works by passing messages between nodes of the factor graph associated with the code and enables efficient decoding, in some cases even up to the Shannon capacity of the channel. Here we construct a belief propagation algorithm which passes quantum messages on the factor graph and is capable of decoding the classical-quantum channel with pure state outputs. This gives explicit decoding circuits whose number of gates is quadratic in the blocklength of the code. We also show that this decoder can be modified to work with polar codes for the pure state channel and as part of a polar decoder for transmitting quantum information over the amplitude damping channel. These represent the first explicit capacity-achieving decoders for non-Pauli channels.Comment: v3: final version for publication; v2: improved discussion of the algorithm; 7 pages & 2 figures. v1: 6 pages, 1 figur
    • …
    corecore