25,718 research outputs found

    Postmortem Analysis of Decayed Online Social Communities: Cascade Pattern Analysis and Prediction

    Full text link
    Recently, many online social networks, such as MySpace, Orkut, and Friendster, have faced inactivity decay of their members, which contributed to the collapse of these networks. The reasons, mechanics, and prevention mechanisms of such inactivity decay are not fully understood. In this work, we analyze decayed and alive sub-websites from the StackExchange platform. The analysis mainly focuses on the inactivity cascades that occur among the members of these communities. We provide measures to understand the decay process and statistical analysis to extract the patterns that accompany the inactivity decay. Additionally, we predict cascade size and cascade virality using machine learning. The results of this work include a statistically significant difference of the decay patterns between the decayed and the alive sub-websites. These patterns are mainly: cascade size, cascade virality, cascade duration, and cascade similarity. Additionally, the contributed prediction framework showed satisfactory prediction results compared to a baseline predictor. Supported by empirical evidence, the main findings of this work are: (1) the decay process is not governed by only one network measure; it is better described using multiple measures; (2) the expert members of the StackExchange sub-websites were mainly responsible for the activity or inactivity of the StackExchange sub-websites; (3) the Statistics sub-website is going through decay dynamics that may lead to it becoming fully-decayed; and (4) decayed sub-websites were originally less resilient to inactivity decay, unlike the alive sub-websites

    Temporal effects in trend prediction: identifying the most popular nodes in the future

    Full text link
    Prediction is an important problem in different science domains. In this paper, we focus on trend prediction in complex networks, i.e. to identify the most popular nodes in the future. Due to the preferential attachment mechanism in real systems, nodes' recent degree and cumulative degree have been successfully applied to design trend prediction methods. Here we took into account more detailed information about the network evolution and proposed a temporal-based predictor (TBP). The TBP predicts the future trend by the node strength in the weighted network with the link weight equal to its exponential aging. Three data sets with time information are used to test the performance of the new method. We find that TBP have high general accuracy in predicting the future most popular nodes. More importantly, it can identify many potential objects with low popularity in the past but high popularity in the future. The effect of the decay speed in the exponential aging on the results is discussed in detail

    Community Aliveness: Discovering Interaction Decay Patterns in Online Social Communities

    Full text link
    Online Social Communities (OSCs) provide a medium for connecting people, sharing news, eliciting information, and finding jobs, among others. The dynamics of the interaction among the members of OSCs is not always growth dynamics. Instead, a decay\textit{decay} or inactivity\textit{inactivity} dynamics often happens, which makes an OSC obsolete. Understanding the behavior and the characteristics of the members of an inactive community help to sustain the growth dynamics of these communities and, possibly, prevents them from being out of service. In this work, we provide two prediction models for predicting the interaction decay of community members, namely: a Simple Threshold Model (STM) and a supervised machine learning classification framework. We conducted evaluation experiments for our prediction models supported by a ground truth\textit{ground truth} of decayed communities extracted from the StackExchange platform. The results of the experiments revealed that it is possible, with satisfactory prediction performance in terms of the F1-score and the accuracy, to predict the decay of the activity of the members of these communities using network-based attributes and network-exogenous attributes of the members. The upper bound of the prediction performance of the methods we used is 0.910.91 and 0.830.83 for the F1-score and the accuracy, respectively. These results indicate that network-based attributes are correlated with the activity of the members and that we can find decay patterns in terms of these attributes. The results also showed that the structure of the decayed communities can be used to support the alive communities by discovering inactive members.Comment: pre-print for the 4th European Network Intelligence Conference - 11-12 September 2017 Duisburg, German

    Empirical studies on the network of social groups: the case of Tencent QQ

    Full text link
    Participation in social groups are important but the collective behaviors of human as a group are difficult to analyze due to the difficulties to quantify ordinary social relation, group membership, and to collect a comprehensive dataset. Such difficulties can be circumvented by analyzing online social networks. In this paper, we analyze a comprehensive dataset obtained from Tencent QQ, an instant messenger with the highest market share in China. Specifically, we analyze three derivative networks involving groups and their members -- the hypergraph of groups, the network of groups and the user network -- to reveal social interactions at microscopic and mesoscopic level. Our results uncover interesting behaviors on the growth of user groups, the interactions between groups, and their relationship with member age and gender. These findings lead to insights which are difficult to obtain in ordinary social networks.Comment: 18 pages, 9 figure

    The Lifecycles of Apps in a Social Ecosystem

    Full text link
    Apps are emerging as an important form of on-line content, and they combine aspects of Web usage in interesting ways --- they exhibit a rich temporal structure of user adoption and long-term engagement, and they exist in a broader social ecosystem that helps drive these patterns of adoption and engagement. It has been difficult, however, to study apps in their natural setting since this requires a simultaneous analysis of a large set of popular apps and the underlying social network they inhabit. In this work we address this challenge through an analysis of the collection of apps on Facebook Login, developing a novel framework for analyzing both temporal and social properties. At the temporal level, we develop a retention model that represents a user's tendency to return to an app using a very small parameter set. At the social level, we organize the space of apps along two fundamental axes --- popularity and sociality --- and we show how a user's probability of adopting an app depends both on properties of the local network structure and on the match between the user's attributes, his or her friends' attributes, and the dominant attributes within the app's user population. We also develop models that show the importance of different feature sets with strong performance in predicting app success.Comment: 11 pages, 10 figures, 3 tables, International World Wide Web Conferenc
    corecore