1,578 research outputs found

    Interactive Simplifier Tracing and Debugging in Isabelle

    Full text link
    The Isabelle proof assistant comes equipped with a very powerful tactic for term simplification. While tremendously useful, the results of simplifying a term do not always match the user's expectation: sometimes, the resulting term is not in the form the user expected, or the simplifier fails to apply a rule. We describe a new, interactive tracing facility which offers insight into the hierarchical structure of the simplification with user-defined filtering, memoization and search. The new simplifier trace is integrated into the Isabelle/jEdit Prover IDE.Comment: Conferences on Intelligent Computer Mathematics, 201

    A Concurrency-Agnostic Protocol for Multi-Paradigm Concurrent Debugging Tools

    Get PDF
    Today's complex software systems combine high-level concurrency models. Each model is used to solve a specific set of problems. Unfortunately, debuggers support only the low-level notions of threads and shared memory, forcing developers to reason about these notions instead of the high-level concurrency models they chose. This paper proposes a concurrency-agnostic debugger protocol that decouples the debugger from the concurrency models employed by the target application. As a result, the underlying language runtime can define custom breakpoints, stepping operations, and execution events for each concurrency model it supports, and a debugger can expose them without having to be specifically adapted. We evaluated the generality of the protocol by applying it to SOMns, a Newspeak implementation, which supports a diversity of concurrency models including communicating sequential processes, communicating event loops, threads and locks, fork/join parallelism, and software transactional memory. We implemented 21 breakpoints and 20 stepping operations for these concurrency models. For none of these, the debugger needed to be changed. Furthermore, we visualize all concurrent interactions independently of a specific concurrency model. To show that tooling for a specific concurrency model is possible, we visualize actor turns and message sends separately.Comment: International Symposium on Dynamic Language

    A Machine-Independent Debugger--Revisited

    Full text link
    Most debuggers are notoriously machine-dependent, but some recent research prototypes achieve varying degrees of machine-independence with novel designs. Cdb, a simple source-level debugger for C, is completely independent of its target architecture. This independence is achieved by embedding symbol tables and debugging code in the target program, which costs both time and space. This paper describes a revised design and implementation of cdb that reduces the space cost by nearly one-half and the time cost by 13% by storing symbol tables in external files. A symbol table is defined by a 31-line grammar in the Abstract Syntax Description Language (ASDL). ASDL is a domain-specific language for specifying tree data structures. The ASDL tools accept an ASDL grammar and generate code to construct, read, and write these data structures. Using ASDL automates implementing parts of the debugger, and the grammar documents the symbol table concisely. Using ASDL also suggested simplifications to the interface between the debugger and the target program. Perhaps most important, ASDL emphasizes that symbol tables are data structures, not file formats. Many of the pitfalls of working with low-level file formats can be avoided by focusing instead on high-level data structures and automating the implementation details.Comment: 12 pages; 6 figures; 3 table

    A Study of Concurrency Bugs and Advanced Development Support for Actor-based Programs

    Full text link
    The actor model is an attractive foundation for developing concurrent applications because actors are isolated concurrent entities that communicate through asynchronous messages and do not share state. Thereby, they avoid concurrency bugs such as data races, but are not immune to concurrency bugs in general. This study taxonomizes concurrency bugs in actor-based programs reported in literature. Furthermore, it analyzes the bugs to identify the patterns causing them as well as their observable behavior. Based on this taxonomy, we further analyze the literature and find that current approaches to static analysis and testing focus on communication deadlocks and message protocol violations. However, they do not provide solutions to identify livelocks and behavioral deadlocks. The insights obtained in this study can be used to improve debugging support for actor-based programs with new debugging techniques to identify the root cause of complex concurrency bugs.Comment: - Submitted for review - Removed section 6 "Research Roadmap for Debuggers", its content was summarized in the Future Work section - Added references for section 1, section 3, section 4.3 and section 5.1 - Updated citation

    On-stack replacement, distilled

    Get PDF
    On-stack replacement (OSR) is essential technology for adaptive optimization, allowing changes to code actively executing in a managed runtime. The engineering aspects of OSR are well-known among VM architects, with several implementations available to date. However, OSR is yet to be explored as a general means to transfer execution between related program versions, which can pave the road to unprecedented applications that stretch beyond VMs. We aim at filling this gap with a constructive and provably correct OSR framework, allowing a class of general-purpose transformation functions to yield a special-purpose replacement. We describe and evaluate an implementation of our technique in LLVM. As a novel application of OSR, we present a feasibility study on debugging of optimized code, showing how our techniques can be used to fix variables holding incorrect values at breakpoints due to optimizations
    • …
    corecore