1,978 research outputs found

    Contract Aware Components, 10 years after

    Get PDF
    The notion of contract aware components has been published roughly ten years ago and is now becoming mainstream in several fields where the usage of software components is seen as critical. The goal of this paper is to survey domains such as Embedded Systems or Service Oriented Architecture where the notion of contract aware components has been influential. For each of these domains we briefly describe what has been done with this idea and we discuss the remaining challenges.Comment: In Proceedings WCSI 2010, arXiv:1010.233

    A review of slicing techniques in software engineering

    Get PDF
    Program slice is the part of program that may take the program off the path of the desired output at some point of its execution. Such point is known as the slicing criterion. This point is generally identified at a location in a given program coupled with the subset of variables of program. This process in which program slices are computed is called program slicing. Weiser was the person who gave the original definition of program slice in 1979. Since its first definition, many ideas related to the program slice have been formulated along with the numerous numbers of techniques to compute program slice. Meanwhile, distinction between the static slice and dynamic slice was also made. Program slicing is now among the most useful techniques that can fetch the particular elements of a program which are related to a particular computation. Quite a large numbers of variants for the program slicing have been analyzed along with the algorithms to compute the slice. Model based slicing split the large architectures of software into smaller sub models during early stages of SDLC. Software testing is regarded as an activity to evaluate the functionality and features of a system. It verifies whether the system is meeting the requirement or not. A common practice now is to extract the sub models out of the giant models based upon the slicing criteria. Process of model based slicing is utilized to extract the desired lump out of slice diagram. This specific survey focuses on slicing techniques in the fields of numerous programing paradigms like web applications, object oriented, and components based. Owing to the efforts of various researchers, this technique has been extended to numerous other platforms that include debugging of program, program integration and analysis, testing and maintenance of software, reengineering, and reverse engineering. This survey portrays on the role of model based slicing and various techniques that are being taken on to compute the slices

    Debugging Techniques for Locating Defects in Software Architectures

    Get PDF
    The explicit design of the architecture for a software product is a well established part of development projects. As the software architecture descriptions are becoming larger and more complex, there is more likelihood of defects being present in the software architecture. Studies have shown that a defect in the software architecture that has propagated to the development phase is very expensive to fix. To prevent such propagation of defects, this research proposes to provide debugging support for software architecture design. Debugging is commonly used in programming languages to effectively find the cause of a failure and locate the error to provide a fix. The same should be accomplished in software architectures to debug architecture failures. Without debugging support, the software architect is unable to quickly locate and determine the source of an error. In our work, we define a process for debugging software architecture and provide analysis techniques to locate defects in a software architecture that fails to meet functional and non-functional requirements. We have implemented the techniques and provide an evaluation of the techniques based on examples using an industry standard architecture definition language, Architecture Analysis and Design Language (AADL)

    IEEE Standard 1500 Compliance Verification for Embedded Cores

    Get PDF
    Core-based design and reuse are the two key elements for an efficient system-on-chip (SoC) development. Unfortunately, they also introduce new challenges in SoC testing, such as core test reuse and the need of a common test infrastructure working with cores originating from different vendors. The IEEE 1500 Standard for Embedded Core Testing addresses these issues by proposing a flexible hardware test wrapper architecture for embedded cores, together with a core test language (CTL) used to describe the implemented wrapper functionalities. Several intellectual property providers have already announced IEEE Standard 1500 compliance in both existing and future design blocks. In this paper, we address the problem of guaranteeing the compliance of a wrapper architecture and its CTL description to the IEEE Standard 1500. This step is mandatory to fully trust the wrapper functionalities in applying the test sequences to the core. We present a systematic methodology to build a verification framework for IEEE Standard 1500 compliant cores, allowing core providers and/or integrators to verify the compliance of their products (sold or purchased) to the standar

    Challenges and Directions in Formalizing the Semantics of Modeling Languages

    Get PDF
    Developing software from models is a growing practice and there exist many model-based tools (e.g., editors, interpreters, debuggers, and simulators) for supporting model-driven engineering. Even though these tools facilitate the automation of software engineering tasks and activities, such tools are typically engineered manually. However, many of these tools have a common semantic foundation centered around an underlying modeling language, which would make it possible to automate their development if the modeling language specification were formalized. Even though there has been much work in formalizing programming languages, with many successful tools constructed using such formalisms, there has been little work in formalizing modeling languages for the purpose of automation. This paper discusses possible semantics-based approaches for the formalization of modeling languages and describes how this formalism may be used to automate the construction of modeling tools

    A formal verification framework and associated tools for enterprise modeling : application to UEML

    Get PDF
    The aim of this paper is to propose and apply a verification and validation approach to Enterprise Modeling that enables the user to improve the relevance and correctness, the suitability and coherence of a model by using properties specification and formal proof of properties
    corecore