2,228 research outputs found

    Debugging Techniques for Locating Defects in Software Architectures

    Get PDF
    The explicit design of the architecture for a software product is a well established part of development projects. As the software architecture descriptions are becoming larger and more complex, there is more likelihood of defects being present in the software architecture. Studies have shown that a defect in the software architecture that has propagated to the development phase is very expensive to fix. To prevent such propagation of defects, this research proposes to provide debugging support for software architecture design. Debugging is commonly used in programming languages to effectively find the cause of a failure and locate the error to provide a fix. The same should be accomplished in software architectures to debug architecture failures. Without debugging support, the software architect is unable to quickly locate and determine the source of an error. In our work, we define a process for debugging software architecture and provide analysis techniques to locate defects in a software architecture that fails to meet functional and non-functional requirements. We have implemented the techniques and provide an evaluation of the techniques based on examples using an industry standard architecture definition language, Architecture Analysis and Design Language (AADL)

    A Historical Perspective on Runtime Assertion Checking in Software Development

    Get PDF
    This report presents initial results in the area of software testing and analysis produced as part of the Software Engineering Impact Project. The report describes the historical development of runtime assertion checking, including a description of the origins of and significant features associated with assertion checking mechanisms, and initial findings about current industrial use. A future report will provide a more comprehensive assessment of development practice, for which we invite readers of this report to contribute information

    Contract Aware Components, 10 years after

    Get PDF
    The notion of contract aware components has been published roughly ten years ago and is now becoming mainstream in several fields where the usage of software components is seen as critical. The goal of this paper is to survey domains such as Embedded Systems or Service Oriented Architecture where the notion of contract aware components has been influential. For each of these domains we briefly describe what has been done with this idea and we discuss the remaining challenges.Comment: In Proceedings WCSI 2010, arXiv:1010.233

    Protocol-Safe Workflow Support for Santa Claus

    Get PDF
    Practical software analysis techniques exploit a form a process description, mostly in some \ud avour of state diagram. Unlike typing information, these process structures are usually not passed down to the implementation level, and neither are they exploited in any form of consistency check. It is our belief that the information in most designs suffices to perform all sorts of consistency checks. This workshop paper studies a simple case where work\ud ow processes interact with `actual' objects at the implementation level, and demonstrates how useful protocol checking can be in making and keeping these processes consistent with each other

    An open extensible tool environment for Event-B

    No full text
    Abstract. We consider modelling indispensable for the development of complex systems. Modelling must be carried out in a formal notation to reason and make meaningful conjectures about a model. But formal modelling of complex systems is a difficult task. Even when theorem provers improve further and get more powerful, modelling will remain difficult. The reason for this that modelling is an exploratory activity that requires ingenuity in order to arrive at a meaningful model. We are aware that automated theorem provers can discharge most of the onerous trivial proof obligations that appear when modelling systems. In this article we present a modelling tool that seamlessly integrates modelling and proving similar to what is offered today in modern integrated development environments for programming. The tool is extensible and configurable so that it can be adapted more easily to different application domains and development methods.

    A review of slicing techniques in software engineering

    Get PDF
    Program slice is the part of program that may take the program off the path of the desired output at some point of its execution. Such point is known as the slicing criterion. This point is generally identified at a location in a given program coupled with the subset of variables of program. This process in which program slices are computed is called program slicing. Weiser was the person who gave the original definition of program slice in 1979. Since its first definition, many ideas related to the program slice have been formulated along with the numerous numbers of techniques to compute program slice. Meanwhile, distinction between the static slice and dynamic slice was also made. Program slicing is now among the most useful techniques that can fetch the particular elements of a program which are related to a particular computation. Quite a large numbers of variants for the program slicing have been analyzed along with the algorithms to compute the slice. Model based slicing split the large architectures of software into smaller sub models during early stages of SDLC. Software testing is regarded as an activity to evaluate the functionality and features of a system. It verifies whether the system is meeting the requirement or not. A common practice now is to extract the sub models out of the giant models based upon the slicing criteria. Process of model based slicing is utilized to extract the desired lump out of slice diagram. This specific survey focuses on slicing techniques in the fields of numerous programing paradigms like web applications, object oriented, and components based. Owing to the efforts of various researchers, this technique has been extended to numerous other platforms that include debugging of program, program integration and analysis, testing and maintenance of software, reengineering, and reverse engineering. This survey portrays on the role of model based slicing and various techniques that are being taken on to compute the slices

    Graphical modelling language for spycifying concurrency based on CSP

    Get PDF
    Introduced in this (shortened) paper is a graphical modelling language for specifying concurrency in software designs. The language notations are derived from CSP and the resulting designs form CSP diagrams. The notations reflect both data-flow and control-flow aspects of concurrent software architectures. These designs can automatically be described by CSP algebraic expressions that can be used for formal analysis. The designer does not have to be aware of the underlying mathematics. The techniques and rules presented provide guidance to the development of concurrent software architectures. One can detect and reason about compositional conflicts (errors in design), potential deadlocks (errors at run-time), and priority inversion problems (performance burden) at a high level of abstraction. The CSP diagram collaborates with objectoriented modelling languages and structured methods

    TURTLE-P: a UML profile for the formal validation of critical and distributed systems

    Get PDF
    The timed UML and RT-LOTOS environment, or TURTLE for short, extends UML class and activity diagrams with composition and temporal operators. TURTLE is a real-time UML profile with a formal semantics expressed in RT-LOTOS. Further, it is supported by a formal validation toolkit. This paper introduces TURTLE-P, an extended profile no longer restricted to the abstract modeling of distributed systems. Indeed, TURTLE-P addresses the concrete descriptions of communication architectures, including quality of service parameters (delay, jitter, etc.). This new profile enables co-design of hardware and software components with extended UML component and deployment diagrams. Properties of these diagrams can be evaluated and/or validated thanks to the formal semantics given in RT-LOTOS. The application of TURTLE-P is illustrated with a telecommunication satellite system
    corecore