12 research outputs found

    Debugging Quadrocopter Trajectories in Mixed Reality

    Get PDF
    Debugging and monitoring robotic applications is a very intricate and error-prone task. To this end, we propose a mixed-reality approach to facilitate this process along a concrete scenario. We connected the Microsoft HoloLens smart glass to the Robot Operating System (ROS), which is used to control robots, and visualize arbitrary flight data of a quadrocopter. Hereby, we display holograms correctly in the real world based on a conversion of the internal tracking coordinates into coordinates provided by a motion capturing system. Moreover, we describe the synchronization process of the internal tracking with the motion capturing. Altogether, the combination of the HoloLens and the external tracking system shows promising preliminary results. Moreover, our approach can be extended to directly manipulate source code through its mixed-reality visualization and offers new interaction methods to debug and develop robotic applications

    Guided Autonomy for Quadcopter Photography

    Get PDF
    Photographing small objects with a quadcopter is non-trivial to perform with many common user interfaces, especially when it requires maneuvering an Unmanned Aerial Vehicle (C) to difficult angles in order to shoot high perspectives. The aim of this research is to employ machine learning to support better user interfaces for quadcopter photography. Human Robot Interaction (HRI) is supported by visual servoing, a specialized vision system for real-time object detection, and control policies acquired through reinforcement learning (RL). Two investigations of guided autonomy were conducted. In the first, the user directed the quadcopter with a sketch based interface, and periods of user direction were interspersed with periods of autonomous flight. In the second, the user directs the quadcopter by taking a single photo with a handheld mobile device, and the quadcopter autonomously flies to the requested vantage point. This dissertation focuses on the following problems: 1) evaluating different user interface paradigms for dynamic photography in a GPS-denied environment; 2) learning better Convolutional Neural Network (CNN) object detection models to assure a higher precision in detecting human subjects than the currently available state-of-the-art fast models; 3) transferring learning from the Gazebo simulation into the real world; 4) learning robust control policies using deep reinforcement learning to maneuver the quadcopter to multiple shooting positions with minimal human interaction

    People exact-tracking using a Parrot AR.Drone 2.0

    Get PDF
    Amb l'ajut de l'algorisme TLD per a realitzar el rastreig i algunes característiques del Visió per Computador usant la llibreria OpenCV, hem implementat una versió modificada de l'algorisme PID per a controlar un drone usant ROS i el package ardrone_autonomy.With the help of the TLD algorithm for the tracking and some Computer Vision features using the OpenCV library, we have implemented a modified version of the PID algorithm to control a drone using ROS and the ardrone_autonomy package

    Social-aware drone navigation using social force model

    Get PDF
    Robot’s navigation is one of the hardest challenges to deal with, because real environments imply highly dynamic objects moving in all directions. The main ideal goal is to conduct a safe navigation within the environment, avoiding obstacles and reaching the final proposed goal. Nowadays, with the last advances in technology, we are able to see robots almost everywhere, and this can lead us to think about the robot’s role in the future, and where we would find them, and it is no exaggerated to say, that practically, flying and land-based robots are going to live together with people, interacting in our houses, streets and shopping centers. Moreover, we will notice their presence, gradually inserted in our human societies, every time doing more human tasks, which in the past years were unthinkable. Therefore, if we think about robots moving or flying around us, we must consider safety, the distance the robot should take to make the human feel comfortable, and the different reactions people would have. The main goal of this work is to accompany people making use of a flying robot. The term social navigation gives us the path to follow when we talk about a social environment. Robots must be able to navigate between humans, giving sense of security to those who are walking close to them. In this work, we present a model called Social Force Model, which states that the human social interaction between persons and objects is inspired in the fluid dynamics de- fined by Newton’s equations, and also, we introduce the extended version which complements the initial method with the human-robot interaction force. In the robotics field, the use of tools for helping the development and the implementation part are crucial. The fast advances in technology allows the international community to have access to cheaper and more compact hardware and software than a decade ago. It is becoming more and more usual to have access to more powerful technology which helps us to run complex algorithms, and because of that, we can run bigger systems in reduced space, making robots more intelligent, more compact and more robust against failures. Our case was not an exception, in the next chapters we will present the procedure we followed to implement the approaches, supported by different simulation tools and software. Because of the nature of the problem we were facing, we made use of Robotic Operating System along with Gazebo, which help us to have a good outlook of how the code will work in real-life experiments. In this work, both real and simulated experiments are presented, in which we expose the interaction conducted by the 3D Aerial Social Force Model, between humans, objects and in this case the AR.Drone, a flying drone property of the Instituto de Robótica e Informática Industrial. We focus on making the drone navigation more socially acceptable by the humans around; the main purpose of the drone is to accompany a person, which we will call the "main" person in this work, who is going to try to navigate side-by-side, with a behavior being dictated with some forces exerted by the environment, and also is going to try to be the more socially close acceptable possible to the remaining humans around. Also, it is presented a comparison between the 3D Aerial Social Force Model and the Artificial Potential Fields method, a well-known method and widely used in robot navigation. We present both methods and the description of the forces each one involves. Along with these two models, there is also another important topic to introduce. As we said, the robot must be able to accompany a pedestrian in his way, and for that reason, the forecasting capacity is an important feature since the robot does not know the final destination of the human to accompany. It is essential to give it the ability to predict the human movements. In this work, we used the differential values between the past position values to know how much is changing through time. This gives us an accurate idea of how the human would behave or which direction he/she would take next. Furthermore, we present a description of the human motion prediction model based on linear regression. The motivation behind the idea of building a Regression Model was the simplicity of the implementation, the robustness and the very accurate results of the approach. The previous main human positions are taken, in order to forecast the new position of the human, the next seconds. This is done with the main purpose of letting the drone know about the direction the human is taking, to move forward beside the human, as if the drone was accompanying him. The optimization for the linear regression model, to find the right weights for our model, was carried out by gradient descent, implementing also de RMSprop variant in order to reach convergence in a faster way. The strategy that was followed to build the prediction model is explained with detail later in this work. The presence of social robots has grown during the past years, many researchers have contributed and many techniques are being used to give them the capacity of interacting safely and effectively with the people, and it is a hot topic which has matured a lot, but still there is many research to be investigated

    Centralized learning and planning : for cognitive robots operating in human domains

    Get PDF

    Aerial Human-Comfortable Collision-free Navigation in Dense Environments

    Get PDF
    With current overuse of the road transportation system and planned increase in traffic, inno- vative solutions that overcome environmental and financial cost of the current system should be assessed. A promising idea is the use of the third dimension for personal transportation. Therefore, the European project myCopter, funded under the 7th framework, aimed at en- abling the technologies for Personal Aerial Transportation Systems as breakthrough in 21st century transportation systems. This project was the starting point of this thesis. When multiple vehicles share a common part of the sky, the biggest challenge is the man- agement of the risk of collision. While optimal collision-free navigation strategies have been proposed for autonomous robots, trajectories and accelerations for Personal Aerial Vehicles (PAVs) should also take into account human comfort for their passengers, which has rarely been the focus of these studies. Comfort of the trajectories is a key factor in order for this new transportation mean to be accepted and adopted by everyday users. Existing strategies used to maximize human-comfort of trajectories are based on path planning strategies, which compute beforehand the whole trajectory, implementing comfort as an optimization criteria. Personal Aerial Transportation Systems will have a high density of vehicles, where the time to react to potential threats might decrease to a few seconds only. This might be insufficient to compute a new trajectory each time using these path planning strategies. Therefore, in this thesis, a reactive decentralized strategy is proposed, maximizing the comfort of the trajectories for humans traveling in a Personal Aerial Vehicle. To prove the feasibility of collision avoidance strategies, it is not sufficient anymore to validate them only in simulation, but, in addition, real-time tests in a realistic outdoor environment should be performed. Nowadays, single drones can be effectively controlled by a single operator on the ground. The challenge relies instead on an efficient management of a whole swarm of drone. In this thesis, a framework to perform outdoor drone experiment was developed in order to validate the proposed collision avoidance strategy. On the one hand, an autopilot framework was developed, tailored for multi-drone experiments, allowing fast and easy deployment and maintenance of a swarm of drones. On the other hand, a ground control interface is proposed in order to monitor, control and maintain safety in a flight with a swarm of drones. Using the autopilot framework together with the ground control interface, the proposed collision avoidance strategy was validated using 10 quadrotors flying autonomously outdoor in a challenging scenario

    Enhancing 3D Autonomous Navigation Through Obstacle Fields: Homogeneous Localisation and Mapping, with Obstacle-Aware Trajectory Optimisation

    Get PDF
    Small flying robots have numerous potential applications, from quadrotors for search and rescue, infrastructure inspection and package delivery to free-flying satellites for assistance activities inside a space station. To enable these applications, a key challenge is autonomous navigation in 3D, near obstacles on a power, mass and computation constrained platform. This challenge requires a robot to perform localisation, mapping, dynamics-aware trajectory planning and control. The current state-of-the-art uses separate algorithms for each component. Here, the aim is for a more homogeneous approach in the search for improved efficiencies and capabilities. First, an algorithm is described to perform Simultaneous Localisation And Mapping (SLAM) with physical, 3D map representation that can also be used to represent obstacles for trajectory planning: Non-Uniform Rational B-Spline (NURBS) surfaces. Termed NURBSLAM, this algorithm is shown to combine the typically separate tasks of localisation and obstacle mapping. Second, a trajectory optimisation algorithm is presented that produces dynamically-optimal trajectories with direct consideration of obstacles, providing a middle ground between path planners and trajectory smoothers. Called the Admissible Subspace TRajectory Optimiser (ASTRO), the algorithm can produce trajectories that are easier to track than the state-of-the-art for flight near obstacles, as shown in flight tests with quadrotors. For quadrotors to track trajectories, a critical component is the differential flatness transformation that links position and attitude controllers. Existing singularities in this transformation are analysed, solutions are proposed and are then demonstrated in flight tests. Finally, a combined system of NURBSLAM and ASTRO are brought together and tested against the state-of-the-art in a novel simulation environment to prove the concept that a single 3D representation can be used for localisation, mapping, and planning

    Европейский и национальный контексты в научных исследованиях

    Get PDF
    В настоящем электронном сборнике «Европейский и национальный контексты в научных исследованиях. Технология» представлены работы молодых ученых по геодезии и картографии, химической технологии и машиностроению, информационным технологиям, строительству и радиотехнике. Предназначены для работников образования, науки и производства. Будут полезны студентам, магистрантам и аспирантам университетов.=In this Electronic collected materials “National and European dimension in research. Technology” works in the fields of geodesy, chemical technology, mechanical engineering, information technology, civil engineering, and radio-engineering are presented. It is intended for trainers, researchers and professionals. It can be useful for university graduate and post-graduate students

    Biomimetic vision-based collision avoidance system for MAVs.

    Get PDF
    This thesis proposes a secondary collision avoidance algorithm for micro aerial vehicles based on luminance-difference processing exhibited by the Lobula Giant Movement Detector (LGMD), a wide-field visual neuron located in the lobula layer of a locust’s nervous system. In particular, we address the design, modulation, hardware implementation, and testing of a computationally simple yet robust collision avoidance algorithm based on the novel concept of quadfurcated luminance-difference processing (QLDP). Micro and Nano class of unmanned robots are the primary target applications of this algorithm, however, it could also be implemented on advanced robots as a fail-safe redundant system. The algorithm proposed in this thesis addresses some of the major detection challenges such as, obstacle proximity, collision threat potentiality, and contrast correction within the robot’s field of view, to establish and generate a precise yet simple collision-free motor control command in real-time. Additionally, it has proven effective in detecting edges independent of background or obstacle colour, size, and contour. To achieve this, the proposed QLDP essentially executes a series of image enhancement and edge detection algorithms to estimate collision threat-level (spike) which further determines if the robot’s field of view must be dissected into four quarters where each quadrant’s response is analysed and interpreted against the others to determine the most secure path. Ultimately, the computation load and the performance of the model is assessed against an eclectic set of off-line as well as real-time real-world collision scenarios in order to validate the proposed model’s asserted capability to avoid obstacles at more than 670 mm prior to collision (real-world), moving at 1.2 msˉ¹ with a successful avoidance rate of 90% processing at an extreme frequency of 120 Hz, that is much superior compared to the results reported in the contemporary related literature to the best of our knowledge.MSc by Researc
    corecore