379 research outputs found

    An AgentSpeak meta-interpreter and its applications

    Get PDF
    A meta-interpreter for a language can provide an easy way of experimenting with modifications or extensions to a language. We give a meta-interpreter for the AgentSpeak language, prove its correctness, and show how the meta-interpreter can be used to extend the AgentSpeak language and to add features to the implementation

    From SMART to agent systems development

    Get PDF
    In order for agent-oriented software engineering to prove effective it must use principled notions of agents and enabling specification and reasoning, while still considering routes to practical implementation. This paper deals with the issue of individual agent specification and construction, departing from the conceptual basis provided by the SMART agent framework. SMART offers a descriptive specification of an agent architecture but omits consideration of issues relating to construction and control. In response, we introduce two new views to complement SMART: a behavioural specification and a structural specification which, together, determine the components that make up an agent, and how they operate. In this way, we move from abstract agent system specification to practical implementation. These three aspects are combined to create an agent construction model, actSMART, which is then used to define the AgentSpeak(L) architecture in order to illustrate the application of actSMART

    Explaining BDI Agent Behaviour Through Dialogue

    Get PDF
    This work arose out of conversations at a Lorentz Workshop on the Dynamics of Multi-Agent Systems (2018). Thanks are due Koen Hindriks and Vincent Koeman for their input. The work was supported by the UKRI/EPSRC RAIN [EP/R026084], SSPEDI [EP/P011829/1 ] and FAIR-SPACE [EP/R026092] Robotics and AI Hubs and the Trustworthy Autonomous Systems Verifiability Node [EP/V026801/1]. Both authors contributed equally to the work, and author names are listed in alphabetical order.Peer reviewedPublisher PD

    A Conceptual Generic Framework to Debugging in the Domain-Specific Modeling Languages for Multi-Agent Systems

    Get PDF
    Despite the existence of many agent programming environments and platforms, the developers may still encounter difficulties on implementing Multi-agent Systems (MASs) due to the complexity of agent features and agent interactions inside the MAS organizations. Working in a higher abstraction layer and modeling agent components within a model-driven engineering (MDE) process before going into depths of MAS implementation may facilitate MAS development. Perhaps the most popular way of applying MDE for MAS is based on creating Domain-specific Modeling Languages (DSMLs) with including appropriate integrated development environments (IDEs) in which both modeling and code generation for system-to-be-developed can be performed properly. Although IDEs of these MAS DSMLs provide some sort of checks on modeled systems according to the related DSML\u27s syntax and semantics descriptions, currently they do not have a built-in support for debugging these MAS models. That deficiency causes the agent developers not to be sure on the correctness of the prepared MAS model at the design phase. To help filling this gap, we introduce a conceptual generic debugging framework supporting the design of agent components inside the modeling environments of MAS DSMLs. The debugging framework is composed of 4 different metamodels and a simulator. Use of the proposed framework starts with modeling a MAS using a design language and transforming design model instances to a run-time model. According to the framework, the run-time model is simulated on a built-in simulator for debugging. The framework also provides a control mechanism for the simulation in the form of a simulation environment model

    Simplifying the development of intelligent agents

    Get PDF
    Intelligent agents is a powerful Artificial Intelligence technology which shows considerable promise as a new paradigm for mainstream software development. However, despite their promise, intelligent agents are still scarce in the market place. A key reason for this is that developing intelligent agent software requires significant training and skill: a typical developer or undergraduate struggles to develop good agent systems using the Belief Desire Intention (BDI) model (or similar models). This paper identifies the concept set which we have found to be important in developing intelligent agent systems and the relationships between these concepts. This concept set was developed with the intention of being clearer, simpler, and easier to use than current approaches.We also describe briefly a (very simplified) example from one of the projects we have worked on (RoboRescue), illustrating the way in which these concepts are important in designing and developing intelligent software agents

    Logic-Based Specification Languages for Intelligent Software Agents

    Full text link
    The research field of Agent-Oriented Software Engineering (AOSE) aims to find abstractions, languages, methodologies and toolkits for modeling, verifying, validating and prototyping complex applications conceptualized as Multiagent Systems (MASs). A very lively research sub-field studies how formal methods can be used for AOSE. This paper presents a detailed survey of six logic-based executable agent specification languages that have been chosen for their potential to be integrated in our ARPEGGIO project, an open framework for specifying and prototyping a MAS. The six languages are ConGoLog, Agent-0, the IMPACT agent programming language, DyLog, Concurrent METATEM and Ehhf. For each executable language, the logic foundations are described and an example of use is shown. A comparison of the six languages and a survey of similar approaches complete the paper, together with considerations of the advantages of using logic-based languages in MAS modeling and prototyping.Comment: 67 pages, 1 table, 1 figure. Accepted for publication by the Journal "Theory and Practice of Logic Programming", volume 4, Maurice Bruynooghe Editor-in-Chie

    Agent programming in the cognitive era

    Get PDF
    It is claimed that, in the nascent ‘Cognitive Era’, intelligent systems will be trained using machine learning techniques rather than programmed by software developers. A contrary point of view argues that machine learning has limitations, and, taken in isolation, cannot form the basis of autonomous systems capable of intelligent behaviour in complex environments. In this paper, we explore the contributions that agent-oriented programming can make to the development of future intelligent systems. We briefly review the state of the art in agent programming, focussing particularly on BDI-based agent programming languages, and discuss previous work on integrating AI techniques (including machine learning) in agent-oriented programming. We argue that the unique strengths of BDI agent languages provide an ideal framework for integrating the wide range of AI capabilities necessary for progress towards the next-generation of intelligent systems. We identify a range of possible approaches to integrating AI into a BDI agent architecture. Some of these approaches, e.g., ‘AI as a service’, exploit immediate synergies between rapidly maturing AI techniques and agent programming, while others, e.g., ‘AI embedded into agents’ raise more fundamental research questions, and we sketch a programme of research directed towards identifying the most appropriate ways of integrating AI capabilities into agent programs
    • 

    corecore