6,719 research outputs found

    Development and Performance Evaluation of a Connected Vehicle Application Development Platform (CVDeP)

    Get PDF
    Connected vehicle (CV) application developers need a development platform to build, test and debug real-world CV applications, such as safety, mobility, and environmental applications, in edge-centric cyber-physical systems. Our study objective is to develop and evaluate a scalable and secure CV application development platform (CVDeP) that enables application developers to build, test and debug CV applications in realtime. CVDeP ensures that the functional requirements of the CV applications meet the corresponding requirements imposed by the specific applications. We evaluated the efficacy of CVDeP using two CV applications (one safety and one mobility application) and validated them through a field experiment at the Clemson University Connected Vehicle Testbed (CU-CVT). Analyses prove the efficacy of CVDeP, which satisfies the functional requirements (i.e., latency and throughput) of a CV application while maintaining scalability and security of the platform and applications

    Multi-bot Easy Control Hierarchy

    Get PDF
    The goal of our project is to create a software architecture that makes it possible to easily control a multi-robot system, as well as seamlessly change control modes during operation. The different control schemes first include the ability to implement on-board and off-board controllers. Second, the commands can specify either actuator level, vehicle level, or fleet level behavior. Finally, motion can be specified by giving a waypoint and time constraint, a velocity and heading, or a throttle and angle. Our code is abstracted so that any type of robot - ranging from ones that use a differential drive set up, to three-wheeled holonomic platforms, to quadcopters - can be added to the system by simply writing drivers that interface with the hardware used and by implementing math packages that do the required calculations. Our team has successfully demonstrated piloting a single robots while switching between waypoint navigation and a joystick controller. In addition, we have demonstrated the synchronized control of two robots using joystick control. Future work includes implementing a more robust cluster control, including off-board functionality, and incorporating our architecture into different types of robots

    System-on-Chip Design and Test with Embedded Debug Capabilities

    Get PDF
    In this project, I started with a System-on-Chip platform with embedded test structures. The baseline platform consisted of a Leon2 CPU, AMBA on-chip bus, and an Advanced Encryption Standard decryption module. The basic objective of this thesis was to use the embedded reconfigurable logic blocks for post-silicon debug and verification. The System-on-Chip platform was designed at the register transistor level and implemented in a 180-nm IBM process. Test logic instrumentation was done with DAFCA (Design Automation for Flexible Chip Architecture) Inc. pre-silicon tools. The design was then synthesized using the Synopsys Design Compiler and placed and routed using Cadence SOC Encounter. Total transistor count is about 3 million, including 1400K transistors for the debug module serving as on chip logic analyzer. Core size of the design is about 4.8mm x 4.8mm and the system is working at 151MHz. Design verification was done with Cadence NCSim. The controllability and observability of internal signals of the design is greatly increased with the help of pre-silicon tools which helps locate bugs and later fix them with the help of post-silicon tools. This helps prevent re-spins on several occasions thus saving millions of dollars. Post-silicon tools have been used to program assertions and triggers and inject numerous personalities into the reconfigurable fabric which has greatly increased the versatility of the circuit
    • …
    corecore