153 research outputs found

    Adversarial Removal of Demographic Attributes from Text Data

    Full text link
    Recent advances in Representation Learning and Adversarial Training seem to succeed in removing unwanted features from the learned representation. We show that demographic information of authors is encoded in -- and can be recovered from -- the intermediate representations learned by text-based neural classifiers. The implication is that decisions of classifiers trained on textual data are not agnostic to -- and likely condition on -- demographic attributes. When attempting to remove such demographic information using adversarial training, we find that while the adversarial component achieves chance-level development-set accuracy during training, a post-hoc classifier, trained on the encoded sentences from the first part, still manages to reach substantially higher classification accuracies on the same data. This behavior is consistent across several tasks, demographic properties and datasets. We explore several techniques to improve the effectiveness of the adversarial component. Our main conclusion is a cautionary one: do not rely on the adversarial training to achieve invariant representation to sensitive features

    Survey of Social Bias in Vision-Language Models

    Full text link
    In recent years, the rapid advancement of machine learning (ML) models, particularly transformer-based pre-trained models, has revolutionized Natural Language Processing (NLP) and Computer Vision (CV) fields. However, researchers have discovered that these models can inadvertently capture and reinforce social biases present in their training datasets, leading to potential social harms, such as uneven resource allocation and unfair representation of specific social groups. Addressing these biases and ensuring fairness in artificial intelligence (AI) systems has become a critical concern in the ML community. The recent introduction of pre-trained vision-and-language (VL) models in the emerging multimodal field demands attention to the potential social biases present in these models as well. Although VL models are susceptible to social bias, there is a limited understanding compared to the extensive discussions on bias in NLP and CV. This survey aims to provide researchers with a high-level insight into the similarities and differences of social bias studies in pre-trained models across NLP, CV, and VL. By examining these perspectives, the survey aims to offer valuable guidelines on how to approach and mitigate social bias in both unimodal and multimodal settings. The findings and recommendations presented here can benefit the ML community, fostering the development of fairer and non-biased AI models in various applications and research endeavors

    Sustaining Fairness via Incremental Learning

    Full text link
    Machine learning systems are often deployed for making critical decisions like credit lending, hiring, etc. While making decisions, such systems often encode the user's demographic information (like gender, age) in their intermediate representations. This can lead to decisions that are biased towards specific demographics. Prior work has focused on debiasing intermediate representations to ensure fair decisions. However, these approaches fail to remain fair with changes in the task or demographic distribution. To ensure fairness in the wild, it is important for a system to adapt to such changes as it accesses new data in an incremental fashion. In this work, we propose to address this issue by introducing the problem of learning fair representations in an incremental learning setting. To this end, we present Fairness-aware Incremental Representation Learning (FaIRL), a representation learning system that can sustain fairness while incrementally learning new tasks. FaIRL is able to achieve fairness and learn new tasks by controlling the rate-distortion function of the learned representations. Our empirical evaluations show that FaIRL is able to make fair decisions while achieving high performance on the target task, outperforming several baselines.Comment: Accepted at AAAI 202

    Applications of Machine Learning: From Single Cell Biology to Algorithmic Fairness

    Full text link
    It is common practice to obtain answers to complex questions by analyzing large amounts of data. Formal modeling and careful mathematical definitions are essential to extracting relevant answers from data, and establishing a mathematical framework requires deliberate interdisciplinary collaboration between the specialists who provide the questions and the mathematicians who translate them. This dissertation details the results of two of these interdisciplinary collaborations: one in single cell RNA sequencing, and the other in fairness. High throughput microfluidic protocols in single cell RNA sequencing (scRNA-seq) collect integer valued mRNA counts from many individual cells in a single experiment; this enables high resolution studies of rare cell types and cell development pathways. ScRNA-seq data are sparse: often 90% of the collected reads are zeros. Specialized methods are required to obtain solutions to biological questions from these sparse, integer-valued data. Determining genetic markers that can identify specific cell populations is one of the major objectives of the analysis of mRNA count data. We introduce RANKCORR, a fast method with robust mathematical underpinnings that performs multi-class marker selection. RANKCORR proceeds by ranking the mRNA count data before linearly separating the ranked data using a small number of genes. Ranking scRNA-seq count data provides a reasonable non-parametric method for analyzing these data; we further include an analysis of the statistical properties of this rank transformation. We compare the performance of RANKCORR to a variety of other marker selection methods. These experiments show that RANKCORR is consistently one of the top-performing marker selection methods on scRNA-seq data, though other methods show similar overall performance. This suggests that the speed of the algorithm is the most important consideration for large data sets. RANKCORR is efficient and able to handle the largest data sets; as such, it is a useful tool for dealing with high throughput scRNA-seq data. The second collaboration combines state of the art machine learning methods with formal definitions of fairness. Machine learning methods have a tendency to preserve or exacerbate biases that exist in data; consequently, the algorithms that influence our daily lives often display biases against certain protected groups. It is both objectionable and often illegal to allow daily decisions (e.g. mortgage approvals, job advertisements) to disadvantage protected groups; a growing body of literature in the field of algorithmic fairness aims to mitigate these issues. We contribute two methods towards this goal. We first introduce a preprocessing method designed to debias the training data. Specifically, the method attempts to remove any variation in the original data that comes from protected group status. This is accomplished by leveraging knowledge of groups that we expect to receive similar outcomes from a fair algorithm. We further present a method for training a classifier (from potentially biased data) that is both accurate and fair using the gradient boosting framework. Gradient boosting is a powerful method for constructing predictive models that can be superior to neural networks on tabular data; the development of a fair gradient boosting method is thus desirable for the adoption of fair methods. Moreover, the method that we present is designed to construct predictors that are fair at an individual level - that is, two comparable individuals will be assigned similar results. This is different from most of the existing fair algorithms that ensure fairness at a statistical level.PHDMathematicsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163215/1/ahsvargo_1.pd

    Benchmarking bias mitigation algorithms in representation learning through fairness metrics

    Full text link
    Le succès des modèles d’apprentissage en profondeur et leur adoption rapide dans de nombreux domaines d’application ont soulevé d’importantes questions sur l’équité de ces modèles lorsqu’ils sont déployés dans le monde réel. Des études récentes ont mis en évidence les biais encodés par les algorithmes d’apprentissage des représentations et ont remis en cause la fiabilité de telles approches pour prendre des décisions. En conséquence, il existe un intérêt croissant pour la compréhension des sources de biais dans l’apprentissage des algorithmes et le développement de stratégies d’atténuation des biais. L’objectif des algorithmes d’atténuation des biais est d’atténuer l’influence des caractéristiques des données sensibles sur les décisions d’éligibilité prises. Les caractéristiques sensibles sont des caractéristiques privées et protégées d’un ensemble de données telles que le sexe ou la race, qui ne devraient pas affecter les décisions de sortie d’éligibilité, c’està-dire les critères qui rendent un individu qualifié ou non qualifié pour une tâche donnée, comme l’octroi de prêts ou l’embauche. Les modèles d’atténuation des biais visent à prendre des décisions d’éligibilité sur des échantillons d’ensembles de données sans biais envers les attributs sensibles des données d’entrée. La difficulté des tâches d’atténuation des biais est souvent déterminée par la distribution de l’ensemble de données, qui à son tour est fonction du déséquilibre potentiel de l’étiquette et des caractéristiques, de la corrélation des caractéristiques potentiellement sensibles avec d’autres caractéristiques des données, du décalage de la distribution de l’apprentissage vers le phase de développement, etc. Sans l’évaluation des modèles d’atténuation des biais dans diverses configurations difficiles, leurs mérites restent incertains. Par conséquent, une analyse systématique qui comparerait différentes approches d’atténuation des biais sous la perspective de différentes mesures d’équité pour assurer la réplication des résultats conclus est nécessaire. À cette fin, nous proposons un cadre unifié pour comparer les approches d’atténuation des biais. Nous évaluons différentes méthodes d’équité formées avec des réseaux de neurones profonds sur un ensemble de données synthétiques commun et un ensemble de données du monde réel pour obtenir de meilleures informations sur le fonctionnement de ces méthodes. En particulier, nous formons environ 3000 modèles différents dans diverses configurations, y compris des configurations de données déséquilibrées et corrélées, pour vérifier les limites des modèles actuels et mieux comprendre dans quelles configurations ils sont sujets à des défaillances. Nos résultats montrent que le biais des modèles augmente à mesure que les ensembles de données deviennent plus déséquilibrés ou que les attributs des ensembles de données deviennent plus corrélés, le niveau de dominance des caractéristiques des ensembles de données sensibles corrélées a un impact sur le biais, et les informations sensibles restent dans la représentation latente même lorsque des algorithmes d’atténuation des biais sont appliqués. Résumant nos contributions - nous présentons un ensemble de données, proposons diverses configurations d’évaluation difficiles et évaluons rigoureusement les récents algorithmes prometteurs d’atténuation des biais dans un cadre commun et publions publiquement cette référence, en espérant que la communauté des chercheurs le considérerait comme un point d’entrée commun pour un apprentissage en profondeur équitable.The rapid use and success of deep learning models in various application domains have raised significant challenges about the fairness of these models when used in the real world. Recent research has shown the biases incorporated within representation learning algorithms, raising doubts about the dependability of such decision-making systems. As a result, there is a growing interest in identifying the sources of bias in learning algorithms and developing bias-mitigation techniques. The bias-mitigation algorithms aim to reduce the impact of sensitive data aspects on eligibility choices. Sensitive features are private and protected features of a dataset, such as gender of the person or race, that should not influence output eligibility decisions, i.e., the criteria that determine whether or not an individual is qualified for a particular activity, such as lending or hiring. Bias mitigation models are designed to make eligibility choices on dataset samples without bias toward sensitive input data properties. The dataset distribution, which is a function of the potential label and feature imbalance, the correlation of potentially sensitive features with other features in the data, the distribution shift from training to the development phase, and other factors, determines the difficulty of bias-mitigation tasks. Without evaluating bias-mitigation models in various challenging setups, the merits of deep learning approaches to these tasks remain unclear. As a result, a systematic analysis is required to compare different bias-mitigation procedures using various fairness criteria to ensure that the final results are replicated. In order to do so, this thesis offers a single paradigm for comparing bias-mitigation methods. To better understand how these methods work, we compare alternative fairness algorithms trained with deep neural networks on a common synthetic dataset and a real-world dataset. We train around 3000 distinct models in various setups, including imbalanced and correlated data configurations, to validate the present models’ limits and better understand which setups are prone to failure. Our findings show that as datasets become more imbalanced or dataset attributes become more correlated, model bias increases, the dominance of correlated sensitive dataset features influence bias, and sensitive data remains in the latent representation even after bias-mitigation algorithms are applied. In summary, we present a dataset, propose multiple challenging assessment scenarios, rigorously analyse recent promising bias-mitigation techniques in a common framework, and openly disclose this benchmark as an entry point for fair deep learning
    • …
    corecore