64 research outputs found

    Leveraging Explanations in Interactive Machine Learning: An Overview

    Get PDF
    Explanations have gained an increasing level of interest in the AI and Machine Learning (ML) communities in order to improve model transparency and allow users to form a mental model of a trained ML model. However, explanations can go beyond this one way communication as a mechanism to elicit user control, because once users understand, they can then provide feedback. The goal of this paper is to present an overview of research where explanations are combined with interactive capabilities as a mean to learn new models from scratch and to edit and debug existing ones. To this end, we draw a conceptual map of the state-of-the-art, grouping relevant approaches based on their intended purpose and on how they structure the interaction, highlighting similarities and differences between them. We also discuss open research issues and outline possible directions forward, with the hope of spurring further research on this blooming research topic

    Gaining Insight into Determinants of Physical Activity using Bayesian Network Learning

    Get PDF
    Contains fulltext : 228326pre.pdf (preprint version ) (Open Access) Contains fulltext : 228326pub.pdf (publisher's version ) (Open Access)BNAIC/BeneLearn 202

    Joint Learning of Label and Environment Causal Independence for Graph Out-of-Distribution Generalization

    Full text link
    We tackle the problem of graph out-of-distribution (OOD) generalization. Existing graph OOD algorithms either rely on restricted assumptions or fail to exploit environment information in training data. In this work, we propose to simultaneously incorporate label and environment causal independence (LECI) to fully make use of label and environment information, thereby addressing the challenges faced by prior methods on identifying causal and invariant subgraphs. We further develop an adversarial training strategy to jointly optimize these two properties for casual subgraph discovery with theoretical guarantees. Extensive experiments and analysis show that LECI significantly outperforms prior methods on both synthetic and real-world datasets, establishing LECI as a practical and effective solution for graph OOD generalization

    Establishing Data Provenance for Responsible Artificial Intelligence Systems

    Get PDF
    Data provenance, a record that describes the origins and processing of data, offers new promises in the increasingly important role of artificial intelligence (AI)-based systems in guiding human decision making. To avoid disastrous outcomes that can result from bias-laden AI systems, responsible AI builds on four important characteristics: fairness, accountability, transparency, and explainability. To stimulate further research on data provenance that enables responsible AI, this study outlines existing biases and discusses possible implementations of data provenance to mitigate them. We first review biases stemming from the data’s origins and pre-processing. We then discuss the current state of practice, the challenges it presents, and corresponding recommendations to address them. We present a summary highlighting how our recommendations can help establish data provenance and thereby mitigate biases stemming from the data’s origins and pre-processing to realize responsible AI-based systems. We conclude with a research agenda suggesting further research avenues

    Large Language Model Alignment: A Survey

    Full text link
    Recent years have witnessed remarkable progress made in large language models (LLMs). Such advancements, while garnering significant attention, have concurrently elicited various concerns. The potential of these models is undeniably vast; however, they may yield texts that are imprecise, misleading, or even detrimental. Consequently, it becomes paramount to employ alignment techniques to ensure these models to exhibit behaviors consistent with human values. This survey endeavors to furnish an extensive exploration of alignment methodologies designed for LLMs, in conjunction with the extant capability research in this domain. Adopting the lens of AI alignment, we categorize the prevailing methods and emergent proposals for the alignment of LLMs into outer and inner alignment. We also probe into salient issues including the models' interpretability, and potential vulnerabilities to adversarial attacks. To assess LLM alignment, we present a wide variety of benchmarks and evaluation methodologies. After discussing the state of alignment research for LLMs, we finally cast a vision toward the future, contemplating the promising avenues of research that lie ahead. Our aspiration for this survey extends beyond merely spurring research interests in this realm. We also envision bridging the gap between the AI alignment research community and the researchers engrossed in the capability exploration of LLMs for both capable and safe LLMs.Comment: 76 page

    Post hoc Explanations may be Ineffective for Detecting Unknown Spurious Correlation

    Full text link
    We investigate whether three types of post hoc model explanations--feature attribution, concept activation, and training point ranking--are effective for detecting a model's reliance on spurious signals in the training data. Specifically, we consider the scenario where the spurious signal to be detected is unknown, at test-time, to the user of the explanation method. We design an empirical methodology that uses semi-synthetic datasets along with pre-specified spurious artifacts to obtain models that verifiably rely on these spurious training signals. We then provide a suite of metrics that assess an explanation method's reliability for spurious signal detection under various conditions. We find that the post hoc explanation methods tested are ineffective when the spurious artifact is unknown at test-time especially for non-visible artifacts like a background blur. Further, we find that feature attribution methods are susceptible to erroneously indicating dependence on spurious signals even when the model being explained does not rely on spurious artifacts. This finding casts doubt on the utility of these approaches, in the hands of a practitioner, for detecting a model's reliance on spurious signals

    Seeking information about assistive technology: Exploring current practices, challenges, and the need for smarter systems

    Get PDF
    Ninety percent of the 1.2 billion people who need assistive technology (AT) do not have access. Information seeking practices directly impact the ability of AT producers, procurers, and providers (AT professionals) to match a user's needs with appropriate AT, yet the AT marketplace is interdisciplinary and fragmented, complicating information seeking. We explored common limitations experienced by AT professionals when searching information to develop solutions for a diversity of users with multi-faceted needs. Through Template Analysis of 22 expert interviews, we find current search engines do not yield the necessary information, or appropriately tailor search results, impacting individuals’ awareness of products and subsequently their availability and the overall effectiveness of AT provision. We present value-based design implications to improve functionality of future AT-information seeking platforms, through incorporating smarter systems to support decision-making and need-matching whilst ensuring ethical standards for disability fairness remain

    Bridging the Human-AI Knowledge Gap: Concept Discovery and Transfer in AlphaZero

    Full text link
    Artificial Intelligence (AI) systems have made remarkable progress, attaining super-human performance across various domains. This presents us with an opportunity to further human knowledge and improve human expert performance by leveraging the hidden knowledge encoded within these highly performant AI systems. Yet, this knowledge is often hard to extract, and may be hard to understand or learn from. Here, we show that this is possible by proposing a new method that allows us to extract new chess concepts in AlphaZero, an AI system that mastered the game of chess via self-play without human supervision. Our analysis indicates that AlphaZero may encode knowledge that extends beyond the existing human knowledge, but knowledge that is ultimately not beyond human grasp, and can be successfully learned from. In a human study, we show that these concepts are learnable by top human experts, as four top chess grandmasters show improvements in solving the presented concept prototype positions. This marks an important first milestone in advancing the frontier of human knowledge by leveraging AI; a development that could bear profound implications and help us shape how we interact with AI systems across many AI applications.Comment: 61 pages, 29 figure
    corecore