22,696 research outputs found

    Parameterized Approximation Schemes using Graph Widths

    Full text link
    Combining the techniques of approximation algorithms and parameterized complexity has long been considered a promising research area, but relatively few results are currently known. In this paper we study the parameterized approximability of a number of problems which are known to be hard to solve exactly when parameterized by treewidth or clique-width. Our main contribution is to present a natural randomized rounding technique that extends well-known ideas and can be used for both of these widths. Applying this very generic technique we obtain approximation schemes for a number of problems, evading both polynomial-time inapproximability and parameterized intractability bounds

    Learning Parameterized Skills

    Full text link
    We introduce a method for constructing skills capable of solving tasks drawn from a distribution of parameterized reinforcement learning problems. The method draws example tasks from a distribution of interest and uses the corresponding learned policies to estimate the topology of the lower-dimensional piecewise-smooth manifold on which the skill policies lie. This manifold models how policy parameters change as task parameters vary. The method identifies the number of charts that compose the manifold and then applies non-linear regression in each chart to construct a parameterized skill by predicting policy parameters from task parameters. We evaluate our method on an underactuated simulated robotic arm tasked with learning to accurately throw darts at a parameterized target location.Comment: Appears in Proceedings of the 29th International Conference on Machine Learning (ICML 2012

    Automating Vehicles by Deep Reinforcement Learning using Task Separation with Hill Climbing

    Full text link
    Within the context of autonomous driving a model-based reinforcement learning algorithm is proposed for the design of neural network-parameterized controllers. Classical model-based control methods, which include sampling- and lattice-based algorithms and model predictive control, suffer from the trade-off between model complexity and computational burden required for the online solution of expensive optimization or search problems at every short sampling time. To circumvent this trade-off, a 2-step procedure is motivated: first learning of a controller during offline training based on an arbitrarily complicated mathematical system model, before online fast feedforward evaluation of the trained controller. The contribution of this paper is the proposition of a simple gradient-free and model-based algorithm for deep reinforcement learning using task separation with hill climbing (TSHC). In particular, (i) simultaneous training on separate deterministic tasks with the purpose of encoding many motion primitives in a neural network, and (ii) the employment of maximally sparse rewards in combination with virtual velocity constraints (VVCs) in setpoint proximity are advocated.Comment: 10 pages, 6 figures, 1 tabl
    • …
    corecore