17,052 research outputs found

    Iterative nonlinear model predictive control of a PH reactor. A comparative analysis

    Get PDF
    IFAC WORLD CONGRESS (16) (16.2005.PRAGA, REPÚBLICA CHECA)This paper describes the control of a batch pH reactor by a nonlinear predictive controller that improves performance by using data of past batches. The control strategy combines the feedback features of a nonlinear predictive controller with the learning capabilities of run-to-run control. The inclusion of real-time data collected during the on-going batch run in addition to those from the past runs make the control strategy capable not only of eliminating repeated errors but also of responding to new disturbances that occur during the run. The paper uses these ideas to devise an integrated controller that increases the capabilities of Nonlinear Model Predictive Control (NMPC) with batch-wise learning. This controller tries to improve existing strategies by the use of a nonlinear controller devised along the last-run trajectory as well as by the inclusion of filters. A comparison with a similar controller based upon a linear model is performed. Simulation results are presented in order to illustrate performance improvements that can be achieved by the new method over the conventional iterative controllers. Although the controller is designed for discrete-time systems, it can be applied to stable continuous plants after discretization

    USSR Space Life Sciences Digest, volume 2, no. 3

    Get PDF
    Soviet scientists are making significant contributions to the field of space medicine and biology through their active manned space program, frequent biosatellites, and extensive ground-based research. An overview of the developments and direction of the USSR Space Life Sciences Program is provided

    Feedback control of spin systems

    Full text link
    The feedback stabilization problem for ensembles of coupled spin 1/2 systems is discussed from a control theoretic perspective. The noninvasive nature of the bulk measurement allows for a fully unitary and deterministic closed loop. The Lyapunov-based feedback design presented does not require spins that are selectively addressable. With this method, it is possible to obtain control inputs also for difficult tasks, like suppressing undesired couplings in identical spin systems.Comment: 16 pages, 15 figure

    Coastal Ecosystem Science: Alien Invasion!

    Get PDF
    This lesson introduces students to the broad concept of invasive species. Students prepare a written case study on an invasive aquatic species, followed by an oral presentation. They will define, compare, and contrast invasive species, alien species, and native species, describe at least three problems that may be associated with invasive species, and describe at least three invasive species, explain how they came to be invasive, and discuss what can be done about them. The lesson plan provides a list of possible species to choose from, and information about their introduction, impact, and control. Suggestions for extensions are also provided. Educational levels: High school, Middle school, Undergraduate lower division

    A STUDY ON DYNAMIC SYSTEMS RESPONSE OF THE PERFORMANCE CHARACTERISTICS OF SOME MAJOR BIOPHYSICAL SYSTEMS

    Get PDF
    Dynamic responses of biophysical systems - performance characteristic

    Modeling for Active Control of Combustion and Thermally Driven Oscillations

    Get PDF
    Organized oscillations excited and sustained by high densities of energy release in combustion chambers have long caused serious problems in development of propulsion systems. The amplitudes often become sufficiently large to cause unacceptable structural vibrations. Because the oscillations are self-excited, they reach limiting amplitudes (limit cycles) only because of the action of nonlinear processes. Traditionally, satisfactory behavior has been achieved through a combination of trial-and-error design and testing, with control always involving passive means: geometrical modifications, changes of propellant composition, or devices to enhance dissipation of acoustic energy. Active control has been applied only to small-scale laboratory devices, but the limited success suggests the possibility of serious applications to full-scale propulsion systems. Realization of that potential rests on further experimental work, combined with deeper understanding of the mechanisms causing the oscillations and of the physical behavior of the systems. Effective design of active control systems will require faithful modeling of the relevant processes over broad frequency ranges covering the spectra of natural modes. This paper will cover the general character of the linear and nonlinear behavior of combustion systems, with special attention to acoustics and the mechanisms of excitation. The discussion is intended to supplement the paper by Doyle et al. concerned primarily with controls issues and the observed behavior of simple laboratory devices

    Detector Description and Performance for the First Coincidence Observations between LIGO and GEO

    Get PDF
    For 17 days in August and September 2002, the LIGO and GEO interferometer gravitational wave detectors were operated in coincidence to produce their first data for scientific analysis. Although the detectors were still far from their design sensitivity levels, the data can be used to place better upper limits on the flux of gravitational waves incident on the earth than previous direct measurements. This paper describes the instruments and the data in some detail, as a companion to analysis papers based on the first data.Comment: 41 pages, 9 figures 17 Sept 03: author list amended, minor editorial change
    corecore