75 research outputs found

    A review of artificial intelligence applied to path planning in UAV swarms

    Get PDF
    This version of the article has been accepted for publication, after peer review and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The Version of Record is available online at: https://doi.org/10.1007/ s00521-021-06569-4This is the accepted version of: A. Puente-Castro, D. Rivero, A. Pazos, and E. Fernández-Blanco, "A review of artificial intelligence applied to path planning in UAV swarms", Neural Computing and Applications, vol. 34, pp. 153–170, 2022. https://doi.org/10.1007/s00521-021-06569-4[Abstract]: Path Planning problems with Unmanned Aerial Vehicles (UAVs) are among the most studied knowledge areas in the related literature. However, few of them have been applied to groups of UAVs. The use of swarms allows to speed up the flight time and, thus, reducing the operational costs. When combined with Artificial Intelligence (AI) algorithms, a single system or operator can control all aircraft while optimal paths for each one can be computed. In order to introduce the current situation of these AI-based systems, a review of the most novel and relevant articles was carried out. This review was performed in two steps: first, a summary of the found articles; second, a quantitative analysis of the publications found based on different factors, such as the temporal evolution or the number of articles found based on different criteria. Therefore, this review provides not only a summary of the most recent work but it gives an overview of the trend in the use of AI algorithms in UAV swarms for Path Planning problems. The AI techniques of the articles found can be separated into four main groups based on their technique: reinforcement Learning techniques, Evolutive Computing techniques, Swarm Intelligence techniques, and, Graph Neural Networks. The final results show an increase in publications in recent years and that there is a change in the predominance of the most widely used techniques.This work is supported by Instituto de Salud Carlos III, grant number PI17/01826 (Collaborative Project in Genomic Data Integration (CICLOGEN) funded by the Instituto de Salud Carlos III from the Spanish National plan for Scientific and Technical Research and Innovation 2013–2016 and the European Regional Development Funds (FEDER)—“A way to build Europe.”. This project was also supported by the General Directorate of Culture, Education and University Management of Xunta de Galicia ED431D 2017/16 and “Drug Discovery Galician Network” Ref. ED431G/01 and the “Galician Network for Colorectal Cancer Research” (Ref. ED431D 2017/23). This work was also funded by the grant for the consolidation and structuring of competitive research units (ED431C 2018/49) from the General Directorate of Culture, Education and University Management of Xunta de Galicia, and the CYTED network (PCI2018_093284) funded by the Spanish Ministry of Ministry of Innovation and Science. This project was also supported by the General Directorate of Culture, Education and University Management of Xunta de Galicia “PRACTICUM DIRECT” Ref. IN845D-2020/03.Xunta de Galicia; ED431D 2017/16Xunta de Galicia; ED431G/01Xunta de Galicia; ED431D 2017/23Xunta de Galicia; ED431C 2018/49Xunta de Galicia; IN845D-2020/0

    Aerial Human-Comfortable Collision-free Navigation in Dense Environments

    Get PDF
    With current overuse of the road transportation system and planned increase in traffic, inno- vative solutions that overcome environmental and financial cost of the current system should be assessed. A promising idea is the use of the third dimension for personal transportation. Therefore, the European project myCopter, funded under the 7th framework, aimed at en- abling the technologies for Personal Aerial Transportation Systems as breakthrough in 21st century transportation systems. This project was the starting point of this thesis. When multiple vehicles share a common part of the sky, the biggest challenge is the man- agement of the risk of collision. While optimal collision-free navigation strategies have been proposed for autonomous robots, trajectories and accelerations for Personal Aerial Vehicles (PAVs) should also take into account human comfort for their passengers, which has rarely been the focus of these studies. Comfort of the trajectories is a key factor in order for this new transportation mean to be accepted and adopted by everyday users. Existing strategies used to maximize human-comfort of trajectories are based on path planning strategies, which compute beforehand the whole trajectory, implementing comfort as an optimization criteria. Personal Aerial Transportation Systems will have a high density of vehicles, where the time to react to potential threats might decrease to a few seconds only. This might be insufficient to compute a new trajectory each time using these path planning strategies. Therefore, in this thesis, a reactive decentralized strategy is proposed, maximizing the comfort of the trajectories for humans traveling in a Personal Aerial Vehicle. To prove the feasibility of collision avoidance strategies, it is not sufficient anymore to validate them only in simulation, but, in addition, real-time tests in a realistic outdoor environment should be performed. Nowadays, single drones can be effectively controlled by a single operator on the ground. The challenge relies instead on an efficient management of a whole swarm of drone. In this thesis, a framework to perform outdoor drone experiment was developed in order to validate the proposed collision avoidance strategy. On the one hand, an autopilot framework was developed, tailored for multi-drone experiments, allowing fast and easy deployment and maintenance of a swarm of drones. On the other hand, a ground control interface is proposed in order to monitor, control and maintain safety in a flight with a swarm of drones. Using the autopilot framework together with the ground control interface, the proposed collision avoidance strategy was validated using 10 quadrotors flying autonomously outdoor in a challenging scenario

    Blind Landings

    Get PDF
    When darkness falls, storms rage, fog settles, or lights fail, pilots are forced to make "instrument landings," relying on technology and training to guide them through typically the most dangerous part of any flight. In this original study, Erik M. Conway recounts one of the most important stories in aviation history: the evolution of aircraft landing aids that make landing safe and routine in almost all weather conditions. Discussing technologies such as the Loth leader-cable system, the American National Bureau of Standards system, and, its descendants, the Instrument Landing System, the MIT-Army-Sperry Gyroscope microwave blind landing system, and the MIT Radiation Lab's radar-based Ground Controlled Approach system, Conway interweaves technological change, training innovation, and pilots' experiences to examine the evolution of blind landing technologies. He shows how systems originally intended to produce routine, all-weather blind landings gradually developed into routine instrument-guided approaches. Even so, after two decades of development and experience, pilots still did not want to place the most critical phase of flight, the landing, entirely in technology's invisible hand. By the end of World War II, the very concept of landing blind therefore had disappeared from the trade literature, a victim of human limitations

    Technology Assessment of eVTOL Personal Air Transportation System

    Get PDF
    This thesis intended to provide a holistic vision on the potential consequences of the introduction of emerging electrical Vertical Takeoff and Landing (e VTOL) Personal Air Transportation System (PATS) to contribute to the forming of public and policy opinion, and to assess the impacts and the feasibility of that. Instead of looking from a detailed vehicle design viewpoint, we tried to understand the need, the impacts, and the perceptions and the concerns of stakeholders. Thus, it was set a framework and methodology starting with a technology assessment point of view in the light of transportation system analysis. Limitations of the current ground and airline transportation systems, increasing congestion, poor block speed, combined with expanding population and demand for affordable on- demand mobility are driving the development of future transportation technology and policy. The third wave of aeronautics might be the answer and could bring about great new capabilities for society that would bring aviation into a new age of being relevant in daily lives since eVTOL PATS is envisioned as the next logical step in the natural progression in the history of disruptive transportation system innovations. However, there are a lot of questions. Although there was difficulty since the system was an emerging air transportation mode, an interdisciplinary study has been conducted to assess the impacts of developing such a capability. The research questions were determined to address the research objectives. What is the current state of mobility and eVTOL air transportation mode? What are the potential benefits of eVTOL air transportation mode for user and society? What are the perceptions of service providers, regulator, and user? What are the main challenges including technology, regulation, operation, social and environment aspects to enable the system? What are the enabling technologies? Nevertheless, with the results obtained lately from the research activities, revolutionary technologies and regulations are bringing us closer to eVTOL PATS reality every day. It can be argued that a new socio-technical transition will come about like the transition from horse drawn carriers to cars. Even if it is still a long way to go, it seems rather likely that the time has been arriving in the next decade. Their existence and operation would therefore need to be taken into consideration for today’s planning considerations and construction projects to be able to have this emerging air transportation mode available in the future. As the technology underlying eVTOL PATS evolves, wider eVTOL adoption across various markets is likely to be supported further if a set of key challenges such as safety and security, ease of use and autonomy, noise, infrastructure, and air traffic management are overcome. Achieving drastic improvements in ease of use, safety and community acceptable noise are the most critical steps towards the future feasibility of this market. Multi-use demos and demonstrating successful operation with early vehicles, namely eVTOL PATS prototype field operations, will create public acceptance and understanding of potentials in emerging air transportation mode for public good, use and learn in multiple applications. The overall perception of the user, service provider and regulator are positive, and the support is high. Shortly, a successful implementation and sustainable transition will depend on overcoming technological hurdles, regulatory frameworks, operational safety, cost competitiveness, and sensibilities of the affected communities. There is a need to enable people and goods to have the convenience of on-demand, point-to-point safe travel, further, anywhere in less travel time, through a network of pocket airports/vertiports, and there is a significant potential benefit so that policy makers, regulators and metropoles’ transportation planning departments should consider an inclusion of eVTOL air transportation mode into the scenarios and policies of the future.Esta tese pretende fornecer uma visão holística sobre as potenciais consequências da introdução do Sistema de Transporte Aéreo Pessoal (PATS) de Decolagem e Pouso Vertical elétrico emergente (e VTOL) para contribuir para a formação de opinião pública e política, e para avaliar os impactos e a viabilidade disso. Em vez de olhar de um ponto de vista detalhado o projeto do veículo, tentamos entender a necessidade, os impactos, as percepções e as preocupações das partes interessadas. Assim, foi definido um quadro e uma metodologia partindo de um ponto de vista de avaliação de tecnologia à luz da análise do sistema de transporte. As limitações dos atuais sistemas de transporte terrestre e aéreo, o aumento do congestionamento, a baixa velocidade do tráfego, combinados com a expansão da população e a mobilidade com procura acessível estão impulsionando o desenvolvimento de futuras tecnologias e políticas de transporte. A terceira onda da aeronáutica pode ser a resposta e pode trazer grandes novas capacidades para a sociedade que trariam a aviação para uma nova era de ser relevante na vida cotidiana, uma vez que o VTOL PATS é visto como o próximo passo lógico na progressão natural na história das inovações disruptivas do sistema de transporte. No entanto, há muitas perguntas. Embora tenha havido dificuldade por se tratar de um modo de transporte aéreo emergente, um estudo interdisciplinar foi realizado para avaliar os impactos do desenvolvimento de tal capacidade. As questões de investigação foram determinadas para atender aos objetivos do projeto. Qual é o estado atual da mobilidade e do modo de transporte aéreo eVTOL? Quais são os benefícios potenciais do modo de transporte aéreo eVTOL para o utilizador e a sociedade? Quais são as percepções dos provedores de serviços, regulador e utilizador? Quais são os principais desafios, incluindo tecnologia, regulamentação, operação, aspectos sociais e ambientais para habilitar o sistema? Quais são as tecnologias facilitadoras? No entanto, com os resultados obtidos ultimamente nas atividades de pesquisa, tecnologias e regulamentações revolucionárias estão nos aproximando cada dia mais da realidade do VTOL PATS. Pode-se argumentar que uma nova transição sócio-técnica ocorrerá como a transição de carruagens puxadas por cavalos para automóveis. Mesmo que ainda seja um longo caminho a percorrer, parece bastante provável que a hora esteja chegando na próxima década. A sua existência e operação, portanto, precisam ser levadas em consideração para as questões de planeamento e projetos de construção de hoje para poder ter esse modo de transporte aéreo emergente disponível no futuro. À medida que a tecnologia subjacente ao eVTOL PATS evolui, é provável que a adoção mais ampla do eVTOL em vários mercados seja ainda mais apoiada se um conjunto de desafios importantes, como segurança e proteção, facilidade de uso e autonomia, ruído, infraestrutura e gestão de tráfego aéreo forem superados. Alcançar melhorias drásticas na facilidade de uso, segurança e ruído aceitável pela comunidade são os passos mais críticos para a viabilidade futura deste mercado. Demonstrações multi-uso e demonstração de operação bem- sucedida com veículos iniciais, ou seja, operações de campo do protótipo eVTOL PATS, criarão aceitação pública e compreensão dos potenciais no modo de transporte aéreo emergente para o bem público, uso e aprendizado em várias aplicações. A percepção geral do utilizador, prestador de serviço e regulador é positiva, e o suporte é alto. Uma implementação bem-sucedida e uma transição sustentável dependerá da superação de obstáculos tecnológicos, estruturas regulatórias, segurança operacional, competitividade de custos e sensibilidade das comunidades afetadas. Há uma necessidade de permitir que pessoas e mercadorias tenham a conveniência de viagens seguras de que necessitam, ponto a ponto, e além disso, em qualquer lugar em menos tempo de viagem. Isso pode ser feito por meio de uma rede de aeroportos/vertiports, e há um benefício potencial significativo para que os formuladores de políticas, reguladores e departamentos de planeamento de transporte das grandes metrópoles considerem a inclusão do modo de transporte aéreo eVTOL nos cenários e políticas do futuro

    Aviation safety information feedback systems

    Get PDF
    Thesis (S.M. in Technology and Policy)--Massachusetts Institute of Technology, Engineering Systems Division, Technology and Policy Program, 2010.Cataloged from PDF version of thesis.Includes bibliographical references (p. 275-283).In the aviation system, there are several feedback systems to prevent an accident. First of all, the accident and serious incident reporting and investigation system is established by the Chicago Convention. In general, once an accident or a serious incident occurs, it must be reported to the Investigation Authority in the state where the event occurred. The Investigation Authority which receives the report conducts the investigation of the event. Then, based on the probable causes identified, the Investigation Authority issues the recommendations to the Civil Aviation Authority. Next, the Civil Aviation Authority which receives the recommendations takes corrective actions, including rule-making, to prevent the recurrence of the event. This feedback system ensures that an accident with the same causes will not occur again. The feedback system described above can be considered a reactive approach. There are also proactive feedback systems to prevent an accident. In order to identify hazards that could potentially lead to an accident, the contracting states of the Convention have mandatory reporting systems for incidents. In addition, some contracting states even have voluntary reporting systems for safety-related occurrences not limited to formally defined incidents. If these feedback systems are utilized to the full extent. they could help in reducing the accident rate. This thesis, aiming at offering insights for responsible authorities in contracting states of the Chicago Convention to improve their aviation safety information feedback systems, conducted a comparative analysis of the feedback systems in four contracting states of the Chicago Convention: the United States, the United Kingdom, Australia and Japan. This thesis examined both mandatory reporting systems and voluntary reporting systems in each state. Furthermore, this thesis examined the rule-making process in each Civil Aviation Authority as part of the feedback systems. This thesis identified several differences in the feedback systems in the four states. In particular, this thesis identified a relatively larger number of differences in voluntary reporting systems than in mandatory reporting systems. On the other hand, as regards the rulemaking process, this thesis showed that there are no substantial differences.by Yoshifuru Funahashi.S.M.in Technology and Polic

    Unmanned Aircraft Systems in the Cyber Domain

    Get PDF
    Unmanned Aircraft Systems are an integral part of the US national critical infrastructure. The authors have endeavored to bring a breadth and quality of information to the reader that is unparalleled in the unclassified sphere. This textbook will fully immerse and engage the reader / student in the cyber-security considerations of this rapidly emerging technology that we know as unmanned aircraft systems (UAS). The first edition topics covered National Airspace (NAS) policy issues, information security (INFOSEC), UAS vulnerabilities in key systems (Sense and Avoid / SCADA), navigation and collision avoidance systems, stealth design, intelligence, surveillance and reconnaissance (ISR) platforms; weapons systems security; electronic warfare considerations; data-links, jamming, operational vulnerabilities and still-emerging political scenarios that affect US military / commercial decisions. This second edition discusses state-of-the-art technology issues facing US UAS designers. It focuses on counter unmanned aircraft systems (C-UAS) – especially research designed to mitigate and terminate threats by SWARMS. Topics include high-altitude platforms (HAPS) for wireless communications; C-UAS and large scale threats; acoustic countermeasures against SWARMS and building an Identify Friend or Foe (IFF) acoustic library; updates to the legal / regulatory landscape; UAS proliferation along the Chinese New Silk Road Sea / Land routes; and ethics in this new age of autonomous systems and artificial intelligence (AI).https://newprairiepress.org/ebooks/1027/thumbnail.jp

    Next generation flight management systems for manned and unmanned aircraft operations - automated separation assurance and collision avoidance functionalities

    Get PDF
    The demand for improved safety, efficiency and dynamic demand-capacity balancing due to the rapid growth of the aviation sector and the increasing proliferation of Unmanned Aircraft Systems (UAS) in different classes of airspace pose significant challenges to avionics system developers. The design of Next Generation Flight Management Systems (NG-FMS) for manned and unmanned aircraft operations is performed by addressing the challenges identified by various Air Traffic Management (ATM) modernisation programmes and UAS Traffic Management (UTM) system initiatives. In particular, this research focusses on introducing automated Separation Assurance and Collision Avoidance (SA&CA) functionalities (mathematical models) in the NG-FMS. The innovative NG-FMS is also capable of supporting automated negotiation and validation of 4-Dimensional Trajectory (4DT) intents in coordination with novel ground-based Next Generation Air Traffic Management (NG-ATM) systems. One of the key research contributions is the development of a unified method for cooperative and non-cooperative SA&CA, addressing the technical and regulatory challenges of manned and unmanned aircraft coexistence in all classes of airspace. Analytical models are presented and validated to compute the overall avoidance volume in the airspace surrounding a tracked object, supporting automated SA&CA functionalities. The scientific basis of this approach is to assess real-time measurements and associated uncertainties affecting navigation states (of the host aircraft platform), tracking observables (of the static or moving object) and platform dynamics, and translate them to unified range and bearing uncertainty descriptors. The SA&CA unified approach provides an innovative analytical framework to generate high-fidelity dynamic geo-fences suitable for integration in the NG-FMS and in the ATM/UTM/defence decision support tools
    corecore