1,197 research outputs found

    Common Representation of Information Flows for Dynamic Coalitions

    Full text link
    We propose a formal foundation for reasoning about access control policies within a Dynamic Coalition, defining an abstraction over existing access control models and providing mechanisms for translation of those models into information-flow domain. The abstracted information-flow domain model, called a Common Representation, can then be used for defining a way to control the evolution of Dynamic Coalitions with respect to information flow

    Static Application-Level Race Detection in STM Haskell using Contracts

    Get PDF
    Writing concurrent programs is a hard task, even when using high-level synchronization primitives such as transactional memories together with a functional language with well-controlled side-effects such as Haskell, because the interferences generated by the processes to each other can occur at different levels and in a very subtle way. The problem occurs when a thread leaves or exposes the shared data in an inconsistent state with respect to the application logic or the real meaning of the data. In this paper, we propose to associate contracts to transactions and we define a program transformation that makes it possible to extend static contract checking in the context of STM Haskell. As a result, we are able to check statically that each transaction of a STM Haskell program handles the shared data in a such way that a given consistency property, expressed in the form of a user-defined boolean function, is preserved. This ensures that bad interference will not occur during the execution of the concurrent program.Comment: In Proceedings PLACES 2013, arXiv:1312.2218. [email protected]; [email protected]

    A Wait-free Multi-word Atomic (1,N) Register for Large-scale Data Sharing on Multi-core Machines

    Get PDF
    We present a multi-word atomic (1,N) register for multi-core machines exploiting Read-Modify-Write (RMW) instructions to coordinate the writer and the readers in a wait-free manner. Our proposal, called Anonymous Readers Counting (ARC), enables large-scale data sharing by admitting up to 23222^{32}-2 concurrent readers on off-the-shelf 64-bits machines, as opposed to the most advanced RMW-based approach which is limited to 58 readers. Further, ARC avoids multiple copies of the register content when accessing it---this affects classical register's algorithms based on atomic read/write operations on single words. Thus it allows for higher scalability with respect to the register size. Moreover, ARC explicitly reduces improves performance via a proper limitation of RMW instructions in case of read operations, and by supporting constant time for read operations and amortized constant time for write operations. A proof of correctness of our register algorithm is also provided, together with experimental data for a comparison with literature proposals. Beyond assessing ARC on physical platforms, we carry out as well an experimentation on virtualized infrastructures, which shows the resilience of wait-free synchronization as provided by ARC with respect to CPU-steal times, proper of more modern paradigms such as cloud computing.Comment: non

    Sound Atomicity Inference for Data-Centric Synchronization

    Full text link
    Data-Centric Concurrency Control (DCCC) shifts the reasoning about concurrency restrictions from control structures to data declaration. It is a high-level declarative approach that abstracts away from the actual concurrency control mechanism(s) in use. Despite its advantages, the practical use of DCCC is hindered by the fact that it may require many annotations and/or multiple implementations of the same method to cope with differently qualified parameters. Moreover, the existing DCCC solutions do not address the use of interfaces, precluding their use in most object-oriented programs. To overcome these limitations, in this paper we present AtomiS, a new DCCC model based on a rigorously defined type-sound programming language. Programming with AtomiS requires only (atomic)-qualifying types of parameters and return values in interface definitions, and of fields in class definitions. From this atomicity specification, a static analysis infers the atomicity constraints that are local to each method, considering valid only the method variants that are consistent with the specification, and performs code generation for all valid variants of each method. The generated code is then the target for automatic injection of concurrency control primitives, by means of the desired automatic technique and associated atomicity and deadlock-freedom guarantees, which can be plugged-into the model's pipeline. We present the foundations for the AtomiS analysis and synthesis, with formal guarantees that the generated program is well-typed and that it corresponds behaviourally to the original one. The proofs are mechanised in Coq. We also provide a Java implementation that showcases the applicability of AtomiS in real-life programs
    corecore