236,661 research outputs found

    Children witnessing domestic violence in the voice of health and social professionals dealing with contrasting gender violence

    Get PDF
    Witnessing domestic violence (WDV) is recognized by the Istanbul Convention as psychological abuse that has dramatic consequences on the psychophysical health of children. Therefore, professionals who form the support network for WDV victims play a very fundamental role. In order to draw up useful guidelines for services dealing with WDV, and to give children more awareness of supportive settings, this study analyzes WDV in the perception of health and welfare professionals to enhance their skills and strategies for contrasting gender violence. Sixteen Neapolitan specialists dealing with WDV children were interviewed. A theoretical intentional sampling was used. Narrative focused interviews were carried out, transcribed verbatim and analyzed through the grounded theory methodology, using the ATLAS.ti 8 software (Scientific Software Development GmbH, Berlin, Germany). We assigned 319 codes and grouped these into 10 categories and 4 macro-categories. The analysis of the texts led to the definition of the core category as “The Crystal Fortress”. It summarizes the image of the WDV children as described by the professionals working in contrasting domestic violence. In this structure the parental roles of protection and care (fortress) are suspended and everything is extremely rigid, fragile and always at risk of a catastrophe. It also symbolizes the difficult role of health professionals in dealing with such children and their families. For WDV children, protective factors guarantee solid development and supportive settings help them to learn proper emotional responsiveness and expressiveness and to develop their skills in talking with adults while avoiding negative consequences

    Managing Climatic Risks to Combat Land Degradation and Enhance Food security: Key Information Needs

    Get PDF
    This paper discusses the key information needs to reduce the negative impacts of weather variability and climate change on land degradation and food security, and identifies the opportunities and barriers between the information and services needed. It suggests that vulnerability assessments based on a livelihood concept that includes climate information and key socio-economic variables can overcome the narrow focus of common one-dimensional vulnerability studies. Both current and future climatic risks can be managed better if there is appropriate policy and institutional support together with technological interventions to address the complexities of multiple risks that agriculture has to face. This would require effective partnerships among agencies dealing with meteorological and hydrological services, agricultural research, land degradation and food security issues. In addition a state-of-the-art infrastructure to measure, record, store and disseminate data on weather variables, and access to weather and seasonal climate forecasts at desired spatial and temporal scales would be needed

    Models of everywhere revisited: a technological perspective

    Get PDF
    The concept ‘models of everywhere’ was first introduced in the mid 2000s as a means of reasoning about the environmental science of a place, changing the nature of the underlying modelling process, from one in which general model structures are used to one in which modelling becomes a learning process about specific places, in particular capturing the idiosyncrasies of that place. At one level, this is a straightforward concept, but at another it is a rich multi-dimensional conceptual framework involving the following key dimensions: models of everywhere, models of everything and models at all times, being constantly re-evaluated against the most current evidence. This is a compelling approach with the potential to deal with epistemic uncertainties and nonlinearities. However, the approach has, as yet, not been fully utilised or explored. This paper examines the concept of models of everywhere in the light of recent advances in technology. The paper argues that, when first proposed, technology was a limiting factor but now, with advances in areas such as Internet of Things, cloud computing and data analytics, many of the barriers have been alleviated. Consequently, it is timely to look again at the concept of models of everywhere in practical conditions as part of a trans-disciplinary effort to tackle the remaining research questions. The paper concludes by identifying the key elements of a research agenda that should underpin such experimentation and deployment

    Towards a pragmatic approach for dealing with uncertainties in water management practice

    Get PDF
    Management of water resources is afflicted with uncertainties. Nowadays it is facing more and new uncertainties since pace and dimension of changes (e.g. climatic, demographic) are accelerating and are likely to increase even more in the future. Hence it is crucial to find pragmatic ways to deal with these uncertainties in water management. So far, decision-making under uncertainty in water management is based on either intuition, heuristics and experience of water managers or on expert assessments all of which are only of limited use for water managers in practice. We argue for an analytical yet pragmatic approach to enable practitioners to deal with uncertainties in a more explicit and systematic way and allow for better informed decisions. Our approach is based on the concept of framing, referring to the different ways in which people make sense of the world and of the uncertainties. We applied and tested recently developed parameters that aim to shed light on the framing of uncertainty in two sub-basins of the Rhine. We present and discuss the results of a series of stakeholder interactions in the two basins aimed at developing strategies for improving dealing with uncertainties. The strategies are synthesized in a cross-checking list based on the uncertainty framing parameters as a hands-on tool for systematically identifying improvement options when dealing with uncertainty in water management practice. We conclude with suggestions for testing the developed check-list as a tool for decision aid in water management practice. Key words: water management, future uncertainties, framing of uncertainties, hands-on decision aid, tools for practice, robust strategies, social learnin

    Architecture of Environmental Risk Modelling: for a faster and more robust response to natural disasters

    Full text link
    Demands on the disaster response capacity of the European Union are likely to increase, as the impacts of disasters continue to grow both in size and frequency. This has resulted in intensive research on issues concerning spatially-explicit information and modelling and their multiple sources of uncertainty. Geospatial support is one of the forms of assistance frequently required by emergency response centres along with hazard forecast and event management assessment. Robust modelling of natural hazards requires dynamic simulations under an array of multiple inputs from different sources. Uncertainty is associated with meteorological forecast and calibration of the model parameters. Software uncertainty also derives from the data transformation models (D-TM) needed for predicting hazard behaviour and its consequences. On the other hand, social contributions have recently been recognized as valuable in raw-data collection and mapping efforts traditionally dominated by professional organizations. Here an architecture overview is proposed for adaptive and robust modelling of natural hazards, following the Semantic Array Programming paradigm to also include the distributed array of social contributors called Citizen Sensor in a semantically-enhanced strategy for D-TM modelling. The modelling architecture proposes a multicriteria approach for assessing the array of potential impacts with qualitative rapid assessment methods based on a Partial Open Loop Feedback Control (POLFC) schema and complementing more traditional and accurate a-posteriori assessment. We discuss the computational aspect of environmental risk modelling using array-based parallel paradigms on High Performance Computing (HPC) platforms, in order for the implications of urgency to be introduced into the systems (Urgent-HPC).Comment: 12 pages, 1 figure, 1 text box, presented at the 3rd Conference of Computational Interdisciplinary Sciences (CCIS 2014), Asuncion, Paragua

    Toward a relational concept of uncertainty: about knowing too little, knowing too differently, and accepting not to know

    Get PDF
    Uncertainty of late has become an increasingly important and controversial topic in water resource management, and natural resources management in general. Diverse managing goals, changing environmental conditions, conflicting interests, and lack of predictability are some of the characteristics that decision makers have to face. This has resulted in the application and development of strategies such as adaptive management, which proposes flexibility and capability to adapt to unknown conditions as a way of dealing with uncertainties. However, this shift in ideas about managing has not always been accompanied by a general shift in the way uncertainties are understood and handled. To improve this situation, we believe it is necessary to recontextualize uncertainty in a broader way¿relative to its role, meaning, and relationship with participants in decision making¿because it is from this understanding that problems and solutions emerge. Under this view, solutions do not exclusively consist of eliminating or reducing uncertainty, but of reframing the problems as such so that they convey a different meaning. To this end, we propose a relational approach to uncertainty analysis. Here, we elaborate on this new conceptualization of uncertainty, and indicate some implications of this view for strategies for dealing with uncertainty in water management. We present an example as an illustration of these concepts. Key words: adaptive management; ambiguity; frames; framing; knowledge relationship; multiple knowledge frames; natural resource management; negotiation; participation; social learning; uncertainty; water managemen
    corecore