78,945 research outputs found

    Using Flow Specifications of Parameterized Cache Coherence Protocols for Verifying Deadlock Freedom

    Full text link
    We consider the problem of verifying deadlock freedom for symmetric cache coherence protocols. In particular, we focus on a specific form of deadlock which is useful for the cache coherence protocol domain and consistent with the internal definition of deadlock in the Murphi model checker: we refer to this deadlock as a system- wide deadlock (s-deadlock). In s-deadlock, the entire system gets blocked and is unable to make any transition. Cache coherence protocols consist of N symmetric cache agents, where N is an unbounded parameter; thus the verification of s-deadlock freedom is naturally a parameterized verification problem. Parametrized verification techniques work by using sound abstractions to reduce the unbounded model to a bounded model. Efficient abstractions which work well for industrial scale protocols typically bound the model by replacing the state of most of the agents by an abstract environment, while keeping just one or two agents as is. However, leveraging such efficient abstractions becomes a challenge for s-deadlock: a violation of s-deadlock is a state in which the transitions of all of the unbounded number of agents cannot occur and so a simple abstraction like the one above will not preserve this violation. In this work we address this challenge by presenting a technique which leverages high-level information about the protocols, in the form of message sequence dia- grams referred to as flows, for constructing invariants that are collectively stronger than s-deadlock. Efficient abstractions can be constructed to verify these invariants. We successfully verify the German and Flash protocols using our technique

    Formal verification of distributed deadlock detection algorithms

    Full text link
    The problem of distributed deadlock detection has undergone extensive study. Formal verification of deadlock detection algorithms in distributed systems is an area of research that has largely been ignored. Instead, most proposed distributed deadlock detection algorithms have used informal or intuitive arguments, simulation or just neglect the entire aspect of verification of correctness; As a consequence, many of these algorithms have been shown incorrect. This research will abstract the notion of deadlock in terms of a temporal logic of actions and discuss the invariant and eventuality properties. The contributions of this research are the development of a distributed deadlock detection algorithm and the formal verification of this algorithm

    Static Trace-Based Deadlock Analysis for Synchronous Mini-Go

    Full text link
    We consider the problem of static deadlock detection for programs in the Go programming language which make use of synchronous channel communications. In our analysis, regular expressions extended with a fork operator capture the communication behavior of a program. Starting from a simple criterion that characterizes traces of deadlock-free programs, we develop automata-based methods to check for deadlock-freedom. The approach is implemented and evaluated with a series of examples

    Sound Static Deadlock Analysis for C/Pthreads (Extended Version)

    Full text link
    We present a static deadlock analysis approach for C/pthreads. The design of our method has been guided by the requirement to analyse real-world code. Our approach is sound (i.e., misses no deadlocks) for programs that have defined behaviour according to the C standard, and precise enough to prove deadlock-freedom for a large number of programs. The method consists of a pipeline of several analyses that build on a new context- and thread-sensitive abstract interpretation framework. We further present a lightweight dependency analysis to identify statements relevant to deadlock analysis and thus speed up the overall analysis. In our experimental evaluation, we succeeded to prove deadlock-freedom for 262 programs from the Debian GNU/Linux distribution with in total 2.6 MLOC in less than 11 hours

    A technique for detecting wait-notify deadlocks in Java

    Get PDF
    Deadlock analysis of object-oriented programs that dynamically create threads and objects is complex, because these programs may have an infinite number of states. In this thesis, I analyze the correctness of wait - notify patterns (e.g. deadlock freedom) by using a newly introduced technique that consists in an analysis model that is a basic concurrent language with a formal semantic. I detect deadlocks by associating a Petri Net graph to each process of the input program. This model allows to check if a deadlock occur by analysing the reachability tree. The technique presented is a basic step of a more complex and complete project, since in my work I only consider programs with one object
    corecore