542 research outputs found

    Scheduling and discrete event control of flexible manufacturing systems based on Petri nets

    Get PDF
    A flexible manufacturing system (FMS) is a computerized production system that can simultaneously manufacture multiple types of products using various resources such as robots and multi-purpose machines. The central problems associated with design of flexible manufacturing systems are related to process planning, scheduling, coordination control, and monitoring. Many methods exist for scheduling and control of flexible manufacturing systems, although very few methods have addressed the complexity of whole FMS operations. This thesis presents a Petri net based method for deadlock-free scheduling and discrete event control of flexible manufacturing systems. A significant advantage of Petri net based methods is their powerful modeling capability. Petri nets can explicitly and concisely model the concurrent and asynchronous activities, multi-layer resource sharing, routing flexibility, limited buffers and precedence constraints in FMSs. Petri nets can also provide an explicit way for considering deadlock situations in FMSs, and thus facilitate significantly the design of a deadlock-free scheduling and control system. The contributions of this work are multifold. First, it develops a methodology for discrete event controller synthesis for flexible manufacturing systems in a timed Petri net framework. The resulting Petri nets have the desired qualitative properties of liveness, boundedness (safeness), and reversibility, which imply freedom from deadlock, no capacity overflow, and cyclic behavior, respectively. This precludes the costly mathematical analysis for these properties and reduces on-line computation overhead to avoid deadlocks. The performance and sensitivity of resulting Petri nets, thus corresponding control systems, are evaluated. Second, it introduces a hybrid heuristic search algorithm based on Petri nets for deadlock-free scheduling of flexible manufacturing systems. The issues such as deadlock, routing flexibility, multiple lot size, limited buffer size and material handling (loading/unloading) are explored. Third, it proposes a way to employ fuzzy dispatching rules in a Petri net framework for multi-criterion scheduling. Finally, it shows the effectiveness of the developed methods through several manufacturing system examples compared with benchmark dispatching rules, integer programming and Lagrangian relaxation approaches

    Improving just-in-time delivery performance of IoT-enabled flexible manufacturing systems with AGV based material transportation

    Get PDF
    Autonomous guided vehicles (AGVs) are driverless material handling systems used for transportation of pallets and line side supply of materials to provide flexibility and agility in shop-floor logistics. Scheduling of shop-floor logistics in such systems is a challenging task due to their complex nature associated with the multiple part types and alternate material transfer routings. This paper presents a decision support system capable of supporting shop-floor decision-making activities during the event of manufacturing disruptions by automatically adjusting both AGV and machine schedules in Flexible Manufacturing Systems (FMSs). The proposed system uses discrete event simulation (DES) models enhanced by the Internet-of-Things (IoT) enabled digital integration and employs a nonlinear mixed integer programming Genetic Algorithm (GA) to find near-optimal production schedules prioritising the just-in-time (JIT) material delivery performance and energy efficiency of the material transportation. The performance of the proposed system is tested on the Integrated Manufacturing and Logistics (IML) demonstrator at WMG, University of Warwick. The results showed that the developed system can find the near-optimal solutions for production schedules subjected to production anomalies in a negligible time, thereby supporting shop-floor decision-making activities effectively and rapidly

    Improving just-in-time delivery performance of IoT-enabled flexible manufacturing systems with AGV based material transportation

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. Autonomous guided vehicles (AGVs) are driverless material handling systems used for transportation of pallets and line side supply of materials to provide flexibility and agility in shop-floor logistics. Scheduling of shop-floor logistics in such systems is a challenging task due to their complex nature associated with the multiple part types and alternate material transfer routings. This paper presents a decision support system capable of supporting shop-floor decision-making activities during the event of manufacturing disruptions by automatically adjusting both AGV and machine schedules in Flexible Manufacturing Systems (FMSs). The proposed system uses discrete event simulation (DES) models enhanced by the Internet-of-Things (IoT) enabled digital integration and employs a nonlinear mixed integer programming Genetic Algorithm (GA) to find near-optimal production schedules prioritising the just-in-time (JIT) material delivery performance and energy efficiency of the material transportation. The performance of the proposed system is tested on the Integrated Manufacturing and Logistics (IML) demonstrator at WMG, University of Warwick. The results showed that the developed system can find the near-optimal solutions for production schedules subjected to production anomalies in a negligible time, thereby supporting shop-floor decision-making activities effectively and rapidly

    Re-scheduling of AGVs Steady State Flow

    Get PDF

    Route planning of automated guided vehicles for container logistics

    Get PDF
    Automated guided vehicles (AGVs) are widely used in container terminals for the movement of material from shipping to the yard area and vice versa. Research in this area is directed toward the development of a path layout design and routing algorithms for container movement. The problem is to design a path layout and a routing algorithm that will route the AGVs along the bi-directional path so that the distance traveled will be minimized. This thesis presents a bi-directional path flow layout and a routing algorithm that guarantee conflict-free, shortest time routes for AGVs. Based on the path layout, a routing algorithm and sufficient, but necessary conditions, mathematical relationships are developed among certain key parameters of vehicle and path. A high degree of concurrency is achieved in the vehicle movement. The routing efficiency is analyzed in terms of the distance traveled and the time required for AGVs to complete all pickup and drop-off jobs. Numerical results are presented to compare performance of the proposed model. The research provides the foundation for a bi-directional path layout design and routing algorithms that will aid the designer to develop complicated path layouts

    TOWARDS DIGITAL TWIN-DRIVEN PERFORMANCE EVALUATION METHODOLOGY OF FMS

    Get PDF
    The paper presents a method of automated modelling and performance evaluation of concurrent production flows carried out in Flexible Manufacturing Systems. The method allows for quick assessment of various variants of such systems, considering their structure and the organization of production flow of possible ways of their implementation. Its essence is the conditions imposed on the designed model, limiting the space of possible variants of the production flow only to deadlock-free variants. The practical usefulness of the model implemented in the proposed method illustrates the example, which describes the simultaneous assessment of alternative variants of the flexible machining module's structure and the planned multi-assortment production. The ability of the method to focus on feasible solutions offers attractive perspectives for guiding the Digital Twin-like scenario in situations caused by the need to change the production flow

    Hybrid multiobjective genetic algorithm for integrated dynamic scheduling and routing of jobs and automated guided vehicles in flexible manufacturing systems

    Get PDF
    The dynamic continues trend of adoption and improvement inventive automated technologies is one of the main competing strategies of many manufacturing industries. Effective integrated operations management of Automated Guided Vehicle (AGV) system in Flexible Manufacturing System (FMS) environment results in the overall system performance. Routing AGVs was proved to be NP-Complete and scheduling of jobs was also proved to be NP hard problems. The running time of any deterministic algorithms solving these types of problems increases very rapidly with the size of the problem, which can be many years with any computational resources available presently. Solving AGVs conflict free routing, dispatching and simultaneous scheduling of the jobs and AGVs in FMS in an integrated manner is identified as the only means of safeguarding the feasibility of the solution to each sub-problem. Genetic algorithm has recorded of huge success in solving NP-Complete optimization problems with similar nature to this problem. The objectives of this research are to develop an algorithm for integrated scheduling and conflict-free routing of jobs and AGVs in FMS environment using a hybrid genetic algorithm, ensure the algorithm validity and improvement on the performance of the developed algorithm. The algorithm generates an integrated scheduling and detail paths route while optimizing makespan, AGV travel time, mean flow time and penalty cost due to jobs tardiness and delay as a result of conflict avoidance. The integrated algorithms use two genetic representations for the individual solution entire sub-chromosomes. The first three sub-chromosomes use random keys to represent jobs sequencing, operations allocation on machines and AGV dispatching, while the remaining sub-chromosomes are representing particular routing paths to be used by each dispatched AGV. The multiobjective fitness function use adaptive weight approach to assign weights to each objective for every generation based on objective improvement performance. Fuzzy expert system is used to control genetic operators using the overall population performance history. The algorithm used weight mapping crossover (WMX) and Insertion Mutation (IM) as genetic operators for sub-chromosomes represented with priority-based representation. Parameterized uniform crossover (PUX) and migration are used as genetic operators for sub-chromosomes represented using random-key based encoding. Computational experiments were conducted on the developed algorithm coded in Matlab to test the effectiveness of the algorithm. First scenario uses static consideration, the second scenario uses dynamic consideration with machine failure recovery. Sensitivity analysis and convergence analysis was also conducted. The results show the effectiveness of the proposed algorithm in generating the integrated scheduling, AGVs dispatching and conflict-free routing. The comparison of the result of the developed integrated algorithm using two benchmark FMS scheduling algorithms datasets is conducted. The comparison shows the improvement of 1.1% and 16% in makespan of the first and the second benchmark production dataset respectively. The major novelty of the algorithm is an integrated approach to the individual sub-problems which ensures the legality, and feasibility of all solutions generated for various sub-problems which in the literature are considered separately
    corecore