299 research outputs found

    Intelligent Colored Token Petri Nets for Modeling, Control, and Validation of Dynamic Changes in Reconfigurable Manufacturing Systems

    Get PDF
    The invention of reconfigurable manufacturing systems (RMSs) has created a challenging problem: how to quickly and effectively modify an RMS to address dynamic changes in a manufacturing system, such as processing failures and rework, machine breakdowns, addition of new machines, addition of new products, removal of old machines, and changes in processing routes induced by the competitive global market. This paper proposes a new model, the intelligent colored token Petri net (ICTPN), to simulate dynamic changes or reconfigurations of a system. The main idea is that intelligent colored tokens denote part types that represent real-time knowledge about changes and status of a system. Thus, dynamic configurations of a system can be effectively modeled. The developed ICTPN can model dynamic changes of a system in a modular manner, resulting in the development of a very compact model. In addition, when configurations appear, only the changed colored token of the part type from the current model has to be modified. Based on the resultant ICTPN model, deadlock-free, conservative, and reversible behavioral properties, among others, are guaranteed. The developed ICTPN model was tested and validated using the GPenSIM tool and compared with existing methods from the literature.publishedVersio

    Skill-based reconfiguration of industrial mobile robots

    Get PDF
    Caused by a rising mass customisation and the high variety of equipment versions, the exibility of manufacturing systems in car productions has to be increased. In addition to a exible handling of production load changes or hardware breakdowns that are established research areas in literature, this thesis presents a skill-based recon guration mechanism for industrial mobile robots to enhance functional recon gurability. The proposed holonic multi-agent system is able to react to functional process changes while missing functionalities are created by self-organisation. Applied to a mobile commissioning system that is provided by AUDI AG, the suggested mechanism is validated in a real-world environment including the on-line veri cation of the recon gured robot functionality in a Validity Check. The present thesis includes an original contribution in three aspects: First, a recon - guration mechanism is presented that reacts in a self-organised way to functional process changes. The application layer of a hardware system converts a semantic description into functional requirements for a new robot skill. The result of this mechanism is the on-line integration of a new functionality into the running process. Second, the proposed system allows maintaining the productivity of the running process and exibly changing the robot hardware through provision of a hardware-abstraction layer. An encapsulated Recon guration Holon dynamically includes the actual con guration each time a recon guration is started. This allows reacting to changed environment settings. As the resulting agent that contains the new functionality, is identical in shape and behaviour to the existing skills, its integration into the running process is conducted without a considerable loss of productivity. Third, the suggested mechanism is composed of a novel agent design that allows implementing self-organisation during the encapsulated recon guration and dependability for standard process executions. The selective assignment of behaviour-based and cognitive agents is the basis for the exibility and e ectiveness of the proposed recon guration mechanism

    A Scalable and Adaptive Network on Chip for Many-Core Architectures

    Get PDF
    In this work, a scalable network on chip (NoC) for future many-core architectures is proposed and investigated. It supports different QoS mechanisms to ensure predictable communication. Self-optimization is introduced to adapt the energy footprint and the performance of the network to the communication requirements. A fault tolerance concept allows to deal with permanent errors. Moreover, a template-based automated evaluation and design methodology and a synthesis flow for NoCs is introduced

    Parallel and Distributed Computing

    Get PDF
    The 14 chapters presented in this book cover a wide variety of representative works ranging from hardware design to application development. Particularly, the topics that are addressed are programmable and reconfigurable devices and systems, dependability of GPUs (General Purpose Units), network topologies, cache coherence protocols, resource allocation, scheduling algorithms, peertopeer networks, largescale network simulation, and parallel routines and algorithms. In this way, the articles included in this book constitute an excellent reference for engineers and researchers who have particular interests in each of these topics in parallel and distributed computing

    On Fault Tolerance Methods for Networks-on-Chip

    Get PDF
    Technology scaling has proceeded into dimensions in which the reliability of manufactured devices is becoming endangered. The reliability decrease is a consequence of physical limitations, relative increase of variations, and decreasing noise margins, among others. A promising solution for bringing the reliability of circuits back to a desired level is the use of design methods which introduce tolerance against possible faults in an integrated circuit. This thesis studies and presents fault tolerance methods for network-onchip (NoC) which is a design paradigm targeted for very large systems-onchip. In a NoC resources, such as processors and memories, are connected to a communication network; comparable to the Internet. Fault tolerance in such a system can be achieved at many abstraction levels. The thesis studies the origin of faults in modern technologies and explains the classification to transient, intermittent and permanent faults. A survey of fault tolerance methods is presented to demonstrate the diversity of available methods. Networks-on-chip are approached by exploring their main design choices: the selection of a topology, routing protocol, and flow control method. Fault tolerance methods for NoCs are studied at different layers of the OSI reference model. The data link layer provides a reliable communication link over a physical channel. Error control coding is an efficient fault tolerance method especially against transient faults at this abstraction level. Error control coding methods suitable for on-chip communication are studied and their implementations presented. Error control coding loses its effectiveness in the presence of intermittent and permanent faults. Therefore, other solutions against them are presented. The introduction of spare wires and split transmissions are shown to provide good tolerance against intermittent and permanent errors and their combination to error control coding is illustrated. At the network layer positioned above the data link layer, fault tolerance can be achieved with the design of fault tolerant network topologies and routing algorithms. Both of these approaches are presented in the thesis together with realizations in the both categories. The thesis concludes that an optimal fault tolerance solution contains carefully co-designed elements from different abstraction levelsSiirretty Doriast

    Design and Programming Methods for Reconfigurable Multi-Core Architectures using a Network-on-Chip-Centric Approach

    Get PDF
    A current trend in the semiconductor industry is the use of Multi-Processor Systems-on-Chip (MPSoCs) for a wide variety of applications such as image processing, automotive, multimedia, and robotic systems. Most applications gain performance advantages by executing parallel tasks on multiple processors due to the inherent parallelism. Moreover, heterogeneous structures provide high performance/energy efficiency, since application-specific processing elements (PEs) can be exploited. The increasing number of heterogeneous PEs leads to challenging communication requirements. To overcome this challenge, Networks-on-Chip (NoCs) have emerged as scalable on-chip interconnect. Nevertheless, NoCs have to deal with many design parameters such as virtual channels, routing algorithms and buffering techniques to fulfill the system requirements. This thesis highly contributes to the state-of-the-art of FPGA-based MPSoCs and NoCs. In the following, the three major contributions are introduced. As a first major contribution, a novel router concept is presented that efficiently utilizes communication times by performing sequences of arithmetic operations on the data that is transferred. The internal input buffers of the routers are exchanged with processing units that are capable of executing operations. Two different architectures of such processing units are presented. The first architecture provides multiply and accumulate operations which are often used in signal processing applications. The second architecture introduced as Application-Specific Instruction Set Routers (ASIRs) contains a processing unit capable of executing any operation and hence, it is not limited to multiply and accumulate operations. An internal processing core located in ASIRs can be developed in C/C++ using high-level synthesis. The second major contribution comprises application and performance explorations of the novel router concept. Models that approximate the achievable speedup and the end-to-end latency of ASIRs are derived and discussed to show the benefits in terms of performance. Furthermore, two applications using an ASIR-based MPSoC are implemented and evaluated on a Xilinx Zynq SoC. The first application is an image processing algorithm consisting of a Sobel filter, an RGB-to-Grayscale conversion, and a threshold operation. The second application is a system that helps visually impaired people by navigating them through unknown indoor environments. A Light Detection and Ranging (LIDAR) sensor scans the environment, while Inertial Measurement Units (IMUs) measure the orientation of the user to generate an audio signal that makes the distance as well as the orientation of obstacles audible. This application consists of multiple parallel tasks that are mapped to an ASIR-based MPSoC. Both applications show the performance advantages of ASIRs compared to a conventional NoC-based MPSoC. Furthermore, dynamic partial reconfiguration in terms of relocation and security aspects are investigated. The third major contribution refers to development and programming methodologies of NoC-based MPSoCs. A software-defined approach is presented that combines the design and programming of heterogeneous MPSoCs. In addition, a Kahn-Process-Network (KPN) –based model is designed to describe parallel applications for MPSoCs using ASIRs. The KPN-based model is extended to support not only the mapping of tasks to NoC-based MPSoCs but also the mapping to ASIR-based MPSoCs. A static mapping methodology is presented that assigns tasks to ASIRs and processors for a given KPN-model. The impact of external hardware components such as sensors, actuators and accelerators connected to the processors is also discussed which makes the approach of high interest for embedded systems

    Design and Management of Manufacturing Systems

    Get PDF
    Although the design and management of manufacturing systems have been explored in the literature for many years now, they still remain topical problems in the current scientific research. The changing market trends, globalization, the constant pressure to reduce production costs, and technical and technological progress make it necessary to search for new manufacturing methods and ways of organizing them, and to modify manufacturing system design paradigms. This book presents current research in different areas connected with the design and management of manufacturing systems and covers such subject areas as: methods supporting the design of manufacturing systems, methods of improving maintenance processes in companies, the design and improvement of manufacturing processes, the control of production processes in modern manufacturing systems production methods and techniques used in modern manufacturing systems and environmental aspects of production and their impact on the design and management of manufacturing systems. The wide range of research findings reported in this book confirms that the design of manufacturing systems is a complex problem and that the achievement of goals set for modern manufacturing systems requires interdisciplinary knowledge and the simultaneous design of the product, process and system, as well as the knowledge of modern manufacturing and organizational methods and techniques

    On Dynamic Monitoring Methods for Networks-on-Chip

    Get PDF
    Rapid ongoing evolution of multiprocessors will lead to systems with hundreds of processing cores integrated in a single chip. An emerging challenge is the implementation of reliable and efficient interconnection between these cores as well as other components in the systems. Network-on-Chip is an interconnection approach which is intended to solve the performance bottleneck caused by traditional, poorly scalable communication structures such as buses. However, a large on-chip network involves issues related to congestion problems and system control, for instance. Additionally, faults can cause problems in multiprocessor systems. These faults can be transient faults, permanent manufacturing faults, or they can appear due to aging. To solve the emerging traffic management, controllability issues and to maintain system operation regardless of faults a monitoring system is needed. The monitoring system should be dynamically applicable to various purposes and it should fully cover the system under observation. In a large multiprocessor the distances between components can be relatively long. Therefore, the system should be designed so that the amount of energy-inefficient long-distance communication is minimized. This thesis presents a dynamically clustered distributed monitoring structure. The monitoring is distributed so that no centralized control is required for basic tasks such as traffic management and task mapping. To enable extensive analysis of different Network-on-Chip architectures, an in-house SystemC based simulation environment was implemented. It allows transaction level analysis without time consuming circuit level implementations during early design phases of novel architectures and features. The presented analysis shows that the dynamically clustered monitoring structure can be efficiently utilized for traffic management in faulty and congested Network-on-Chip-based multiprocessor systems. The monitoring structure can be also successfully applied for task mapping purposes. Furthermore, the analysis shows that the presented in-house simulation environment is flexible and practical tool for extensive Network-on-Chip architecture analysis.Siirretty Doriast

    Run-time management of many-core SoCs: A communication-centric approach

    Get PDF
    The single core performance hit the power and complexity limits in the beginning of this century, moving the industry towards the design of multi- and many-core system-on-chips (SoCs). The on-chip communication between the cores plays a criticalrole in the performance of these SoCs, with power dissipation, communication latency, scalability to many cores, and reliability against the transistor failures as the main design challenges. Accordingly, we dedicate this thesis to the communicationcentered management of the many-core SoCs, with the goal to advance the state-ofthe-art in addressing these challenges. To this end, we contribute to on-chip communication of many-core SoCs in three main directions. First, we start with a synthesizable SoC with full system simulation. We demonstrate the importance of the networking overhead in a practical system, and propose our sophisticated network interface (NI) that offloads the work from SW to HW. Our results show around 5x and up to 50x higher network performance, compared to previous works. As the second direction of this thesis, we study the significance of run-time application mapping. We demonstrate that contiguous application mapping not only improves the network latency (by 23%) and power dissipation (by 50%), but also improves the system throughput (by 3%) and quality-of-service (QoS) of soft real-time applications (up to 100x less deadline misses). Also our hierarchical run-time application mapping provides 99.41% successful mapping when up to 8 links are broken. As the final direction of the thesis, we propose a fault-tolerant routing algorithm, the maze-routing. It is the first-in-class algorithm that provides guaranteed delivery, a fully-distributed solution, low area overhead (by 16x), and instantaneous reconfiguration (vs. 40K cycles down time of previous works), all at the same time. Besides the individual goals of each contribution, when applicable, we ensure that our solutions scale to extreme network sizes like 12x12 and 16x16. This thesis concludes that the communication overhead and its optimization play a significant role in the performance of many-core SoC

    Proceedings of the 5th International Workshop on Reconfigurable Communication-centric Systems on Chip 2010 - ReCoSoC\u2710 - May 17-19, 2010 Karlsruhe, Germany. (KIT Scientific Reports ; 7551)

    Get PDF
    ReCoSoC is intended to be a periodic annual meeting to expose and discuss gathered expertise as well as state of the art research around SoC related topics through plenary invited papers and posters. The workshop aims to provide a prospective view of tomorrow\u27s challenges in the multibillion transistor era, taking into account the emerging techniques and architectures exploring the synergy between flexible on-chip communication and system reconfigurability
    corecore