73 research outputs found

    OutFlank Routing: Increasing Throughput in Toroidal Interconnection Networks

    Full text link
    We present a new, deadlock-free, routing scheme for toroidal interconnection networks, called OutFlank Routing (OFR). OFR is an adaptive strategy which exploits non-minimal links, both in the source and in the destination nodes. When minimal links are congested, OFR deroutes packets to carefully chosen intermediate destinations, in order to obtain travel paths which are only an additive constant longer than the shortest ones. Since routing performance is very sensitive to changes in the traffic model or in the router parameters, an accurate discrete-event simulator of the toroidal network has been developed to empirically validate OFR, by comparing it against other relevant routing strategies, over a range of typical real-world traffic patterns. On the 16x16x16 (4096 nodes) simulated network OFR exhibits improvements of the maximum sustained throughput between 14% and 114%, with respect to Adaptive Bubble Routing.Comment: 9 pages, 5 figures, to be presented at ICPADS 201

    The Effect Of Hot Spots On The Performance Of Mesh--Based Networks

    Get PDF
    Direct network performance is affected by different design parameters which include number of virtual channels, number of ports, routing algorithm, switching technique, deadlock handling technique, packet size, and buffer size. Another factor that affects network performance is the traffic pattern. In this thesis, we study the effect of hotspot traffic on system performance. Specifically, we study the effect of hotspot factor, hotspot number, and hot spot location on the performance of mesh-based networks. Simulations are run on two network topologies, both the mesh and torus. We pay more attention to meshes because they are widely used in commercial machines. Comparisons between oblivious wormhole switching and chaotic packet switching are reported. Overall packet switching proved to be more efficient in terms of throughput when compared to wormhole switching. In the case of uniform random traffic, it is shown that the differences between chaotic and oblivious routing are indistinguishable. Networks with low number of hotspots show better performance. As the number of hotspots increases network latency tends to increase. It is shown that when the hotspot factor increases, performance of packet switching is better than that of wormhole switching. It is also shown that the location of hotspots affects network performance particularly with the oblivious routers since their achieved latencies proved to be more vulnerable to changes in the hotspot location. It is also shown that the smaller the size of the network the earlier network saturation occurs. Further, it is shown that the chaos router’s adaptivity is useful in this case. Finally, for tori, performance is not greatly affected by hotspot presence. This is mostly due to the symmetric nature of tori

    Application-Aware Deadlock-Free Oblivious Routing

    Get PDF
    Conventional oblivious routing algorithms are either not application-aware or assume that each flow has its own private channel to ensure deadlock avoidance. We present a framework for application-aware routing that assures deadlock-freedom under one or more channels by forcing routes to conform to an acyclic channel dependence graph. Arbitrary minimal routes can be made deadlock-free through appropriate static channel allocation when two or more channels are available. Given bandwidth estimates for flows, we present a mixed integer-linear programming (MILP) approach and a heuristic approach for producing deadlock-free routes that minimize maximum channel load. The heuristic algorithm is calibrated using the MILP algorithm and evaluated on a number of benchmarks through detailed network simulation. Our framework can be used to produce application-aware routes that target the minimization of latency, number of flows through a link, bandwidth, or any combination thereof

    Application-Aware Deadlock-Free Oblivious Routing

    Get PDF
    Conventional oblivious routing algorithms are either not application-aware or assume that each flow has its own private channel to ensure deadlock avoidance. We present a framework for application-aware routing that assures deadlock-freedom under one or more channels by forcing routes to conform to an acyclic channel dependence graph. Arbitrary minimal routes can be made deadlock-free through appropriate static channel allocation when two or more channels are available. Given bandwidth estimates for flows, we present a mixed integer-linear programming (MILP) approach and a heuristic approach for producing deadlock-free routes that minimize maximum channel load. The heuristic algorithm is calibrated using the MILP algorithm and evaluated on a number of benchmarks through detailed network simulation. Our framework can be used to produce application-aware routes that target the minimization of latency, number of flows through a link, bandwidth, or any combination thereof

    FlexVC: Flexible virtual channel management in low-diameter networks

    Get PDF
    Deadlock avoidance mechanisms for lossless lowdistance networks typically increase the order of virtual channel (VC) index with each hop. This restricts the number of buffer resources depending on the routing mechanism and limits performance due to an inefficient use. Dynamic buffer organizations increase implementation complexity and only provide small gains in this context because a significant amount of buffering needs to be allocated statically to avoid congestion. We introduce FlexVC, a simple buffer management mechanism which permits a more flexible use of VCs. It combines statically partitioned buffers, opportunistic routing and a relaxed distancebased deadlock avoidance policy. FlexVC mitigates Head-of-Line blocking and reduces up to 50% the memory requirements. Simulation results in a Dragonfly network show congestion reduction and up to 37.8% throughput improvement, outperforming more complex dynamic approaches. FlexVC merges different flows of traffic in the same buffers, which in some cases makes more difficult to identify the traffic pattern in order to support nonminimal adaptive routing. An alternative denoted FlexVCminCred improves congestion sensing for adaptive routing by tracking separately packets routed minimally and nonminimally, rising throughput up to 20.4% with 25% savings in buffer area.This work has been supported by the Spanish Government (grant SEV2015-0493 of the Severo Ochoa Program), the Spanish Ministry of Economy, Industry and Competitiveness (contracts TIN2015-65316), the Spanish Research Agency (AEI/FEDER, UE - TIN2016-76635-C2-2-R), the Spanish Ministry of Education (FPU grant FPU13/00337), the Generalitat de Catalunya (contracts 2014-SGR-1051 and 2014- SGR-1272), the European Union FP7 programme (RoMoL ERC Advanced Grant GA 321253), the European HiPEAC Network of Excellence and the European Union’s Horizon 2020 research and innovation programme (Mont-Blanc project under grant agreement No 671697).Peer ReviewedPostprint (author's final draft

    Fault tolerant adaptive routing in multicomputer networks

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1995.Includes bibliographical references (p. 149-152).by Thucydides Xanthopoulos.M.S

    Static virtual channel allocation in oblivious routing

    Get PDF
    Most virtual channel routers have multiple virtual channels to mitigate the effects of head-of-line blocking. When there are more flows than virtual channels at a link, packets or flows must compete for channels, either in a dynamic way at each link or by static assignment computed before transmission starts. In this paper, we present methods that statically allocate channels to flows at each link when oblivious routing is used, and ensure deadlock freedom for arbitrary minimal routes when two or more virtual channels are available. We then experimentally explore the performance trade-offs of static and dynamic virtual channel allocation for various oblivious routing methods, including DOR, ROMM, Valiant and a novel bandwidth-sensitive oblivious routing scheme (BSORM). Through judicious separation of flows, static allocation schemes often exceed the performance of dynamic allocation schemes

    Submicron Systems Architecture Project: Semiannual Technial Report

    Get PDF
    No abstract available
    • …
    corecore