89 research outputs found

    Deadlock-freeness of hexagonal systolic arrays

    Get PDF
    With the re-emergence of parallel computation for technical applications in these days also the classical concept of systolic arrays is becoming important again. However, for the sake of their operational safety, the question of deadlock must be addressed. For this contribution we used the well-known Roscoe-Dathi method to demonstrate the deadlock-freeness of a systolic array with hexagonal connectivity. Our result implies that it is theoretically safe to deploy such arrays on various platforms. Our proof is valid for all cases in which the computational pattern (input-output-behaviour) of the array does not depend on the particular values (contents) of the communicated data.http://www.elsevier.com/locate/iplmv201

    Diastolic arrays : throughput-driven reconfigurable computing

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (leaves 67-70).In this thesis, we propose a new reconfigurable computer substrate: diastolic arrays. Diastolic arrays are arrays of processing elements that communicate exclusively through First-In First-Out (FIFO) queues, and provide hardware support to guarantee bandwidth and buffer space for all data transfers. FIFO control implies that a module idles if its input FIFOs are empty, and stalls if its output FIFOs are full. The timing of data transfers between processing elements in diastolic arrays is therefore significantly more relaxed than in systolic arrays or pipelines. All specified data transfers are statically routed, and the routing problem to maximize average throughput can be optimally or near-optimally solved in polynomial time by formulating it as a maximum concurrent multicommodity flow problem and using linear programming. We show that the architecture of diastolic arrays enables efficient synthesis from high-level specifications of communicating finite state machines, providing a high-performance, off-the-shelf computer substrate that can be easily programmed.by Myong Hyon Cho.S.M

    Submicron Systems Architecture Project: Semiannual Technial Report

    Get PDF
    No abstract available
    • …
    corecore