3,661 research outputs found

    Formal verification of distributed deadlock detection algorithms

    Full text link
    The problem of distributed deadlock detection has undergone extensive study. Formal verification of deadlock detection algorithms in distributed systems is an area of research that has largely been ignored. Instead, most proposed distributed deadlock detection algorithms have used informal or intuitive arguments, simulation or just neglect the entire aspect of verification of correctness; As a consequence, many of these algorithms have been shown incorrect. This research will abstract the notion of deadlock in terms of a temporal logic of actions and discuss the invariant and eventuality properties. The contributions of this research are the development of a distributed deadlock detection algorithm and the formal verification of this algorithm

    The role of expert systems in federated distributed multi-database systems/Ince Levent

    Get PDF
    A shared information system is a series of computer systems interconnected by some kind of communication network. There are data repositories residing on each computer. These data repositories must somehow be integrated. The purpose for using distributed and multi-database systems is to allow users to view collections of data repositories as if they were a single entity. Multidatabase systems, better known as heterogeneous multidatabase systems, are characterized by dissimilar data models, concurrency and optimization strategies and access methods. Unlike homogenous systems, the data models that compose the global database can be based on different types of data models. It is not necessary that all participant databases use the same data model. Federated distributed database systems are a special case of multidatabase systems. They are completely autonomous and do not rely on the global data dictionary to process distributed queries. Processing distributed query requests in federated databases is very difficult since there are multiple independent databases with their own rules for query optimization, deadlock detection, and concurrency. Expert systems can play a role in this type of environment by supplying a knowledge base that contains rules for data object conversion, rules for resolving naming conflicts, and rules for exchanging data.http://archive.org/details/theroleofexperts109459362Turkish Navy author.Approved for public release; distribution is unlimited

    Protocols for Integrity Constraint Checking in Federated Databases

    Get PDF
    A federated database is comprised of multiple interconnected database systems that primarily operate independently but cooperate to a certain extent. Global integrity constraints can be very useful in federated databases, but the lack of global queries, global transaction mechanisms, and global concurrency control renders traditional constraint management techniques inapplicable. This paper presents a threefold contribution to integrity constraint checking in federated databases: (1) The problem of constraint checking in a federated database environment is clearly formulated. (2) A family of protocols for constraint checking is presented. (3) The differences across protocols in the family are analyzed with respect to system requirements, properties guaranteed by the protocols, and processing and communication costs. Thus, our work yields a suite of options from which a protocol can be chosen to suit the system capabilities and integrity requirements of a particular federated database environment

    Performance analysis of static locking in replicated distributed database systems

    Get PDF
    Data replication and transaction deadlocks can severely affect the performance of distributed database systems. Many current evaluation techniques ignore these aspects, because it is difficult to evaluate through analysis and time consuming to evaluate through simulation. A technique is used that combines simulation and analysis to closely illustrate the impact of deadlock and evaluate performance of replicated distributed database with both shared and exclusive locks

    Integrity Constraint Checking in Federated Databases

    Get PDF
    A federated database is comprised of multiple interconnected databases that cooperate in an autonomous fashion. Global integrity constraints are very useful in federated databases, but the lack of global queries, global transaction mechanisms, and global concurrency control renders traditional constraint management techniques inapplicable. The paper presents a threefold contribution to integrity constraint checking in federated databases: (1) the problem of constraint checking in a federated database environment is clearly formulated; (2) a family of cooperative protocols for constraint checking is presented; (3) the differences across protocols in the family are analyzed with respect to system requirements, properties guaranteed, and costs involved. Thus, we provide a suite of options with protocols for various environments with specific system capabilities and integrity requirement
    corecore