871 research outputs found

    A Survey of Fault-Tolerance Techniques for Embedded Systems from the Perspective of Power, Energy, and Thermal Issues

    Get PDF
    The relentless technology scaling has provided a significant increase in processor performance, but on the other hand, it has led to adverse impacts on system reliability. In particular, technology scaling increases the processor susceptibility to radiation-induced transient faults. Moreover, technology scaling with the discontinuation of Dennard scaling increases the power densities, thereby temperatures, on the chip. High temperature, in turn, accelerates transistor aging mechanisms, which may ultimately lead to permanent faults on the chip. To assure a reliable system operation, despite these potential reliability concerns, fault-tolerance techniques have emerged. Specifically, fault-tolerance techniques employ some kind of redundancies to satisfy specific reliability requirements. However, the integration of fault-tolerance techniques into real-time embedded systems complicates preserving timing constraints. As a remedy, many task mapping/scheduling policies have been proposed to consider the integration of fault-tolerance techniques and enforce both timing and reliability guarantees for real-time embedded systems. More advanced techniques aim additionally at minimizing power and energy while at the same time satisfying timing and reliability constraints. Recently, some scheduling techniques have started to tackle a new challenge, which is the temperature increase induced by employing fault-tolerance techniques. These emerging techniques aim at satisfying temperature constraints besides timing and reliability constraints. This paper provides an in-depth survey of the emerging research efforts that exploit fault-tolerance techniques while considering timing, power/energy, and temperature from the real-time embedded systems’ design perspective. In particular, the task mapping/scheduling policies for fault-tolerance real-time embedded systems are reviewed and classified according to their considered goals and constraints. Moreover, the employed fault-tolerance techniques, application models, and hardware models are considered as additional dimensions of the presented classification. Lastly, this survey gives deep insights into the main achievements and shortcomings of the existing approaches and highlights the most promising ones

    uRT51: An Embedded Real-Time processor implemented on FPGA devices

    Get PDF
    In this paper we describe and evaluate the main features of the uRT51 processor. The uRT51 processor was designed for embedded realtime control applications. It is a processor architecture that incorporates the specific functions of a real-time system in hardware. It was described using synthesizable VHDL and it was implemented on FPGA devices. We describe how the uRT51 processor supports time, events, task and priorities. The performance of the uRT51 processor is evaluated using a control application as a case study. The experiments show that the uRT51 processor scheduling features outperform the ones obtained using a traditional RTOS-based real-time system.Fil: Cayssials, Ricardo Luis. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; ArgentinaFil: Duval, M,. Provincia de Buenos Aires. Gobernación. Comisión de Investigaciones Científicas; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; ArgentinaFil: Ferro, Edgardo Carlos. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; ArgentinaFil: Alimenti, O.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca; Argentina. Universidad Nacional del Sur. Departamento de Ingeniería Eléctrica y de Computadoras; Argentin

    MCFlow: Middleware for Mixed-Criticality Distributed Real-Time Systems

    Get PDF
    Traditional fixed-priority scheduling analysis for periodic/sporadic task sets is based on the assumption that all tasks are equally critical to the correct operation of the system. Therefore, every task has to be schedulable under the scheduling policy, and estimates of tasks\u27 worst case execution times must be conservative in case a task runs longer than is usual. To address the significant under-utilization of a system\u27s resources under normal operating conditions that can arise from these assumptions, several \emph{mixed-criticality scheduling} approaches have been proposed. However, to date there has been no quantitative comparison of system schedulability or run-time overhead for the different approaches. In this dissertation, we present what is to our knowledge the first side-by-side implementation and evaluation of those approaches, for periodic and sporadic mixed-criticality tasks on uniprocessor or distributed systems, under a mixed-criticality scheduling model that is common to all these approaches. To make a fair evaluation of mixed-criticality scheduling, we also address some previously open issues and propose modifications to improve schedulability and correctness of particular approaches. To facilitate the development and evaluation of mixed-criticality applications, we have designed and developed a distributed real-time middleware, called MCFlow, for mixed-criticality end-to-end tasks running on multi-core platforms. The research presented in this dissertation provides the following contributions to the state of the art in real-time middleware: (1) an efficient component model through which dependent subtask graphs can be configured flexibly for execution within a single core, across cores of a common host, or spanning multiple hosts; (2) support for optimizations to inter-component communication to reduce data copying without sacrificing the ability to execute subtasks in parallel; (3) a strict separation of timing and functional concerns so that they can be configured independently; (4) an event dispatching architecture that uses lock free algorithms where possible to reduce memory contention, CPU context switching, and priority inversion; and (5) empirical evaluations of MCFlow itself and of different mixed criticality scheduling approaches both with a single host and end-to-end across multiple hosts. The results of our evaluation show that in terms of basic distributed real-time behavior MCFlow performs comparably to the state of the art TAO real-time object request broker when only one core is used and outperforms TAO when multiple cores are involved. We also identify and categorize different use cases under which different mixed criticality scheduling approaches are preferable

    Software development of reconfigurable real-time systems : from specification to implementation

    Get PDF
    This thesis deals with reconfigurable real-time systems solving real-time tasks scheduling problems in a mono-core and multi-core architectures. The main focus in this thesis is on providing guidelines, methods, and tools for the synthesis of feasible reconfigurable real-time systems in a mono-processor and multi-processor architectures. The development of these systems faces various challenges particularly in terms of stability, energy consumption, response and blocking time. To address this problem, we propose in this work a new strategy of i) placement and scheduling of tasks to execute real-time applications on mono-core and multi-core architectures, ii) optimization step based on Mixed integer linear programming (MILP), and iii) guidance tool that assists designers to implement a feasible multi-core reconfigurable real-time from specification level to implementation level. We apply and simulate the contribution to a case study, and compare the proposed results with related works in order to show the originality of this methodology.Echtzeitsysteme laufen unter harten Bedingungen an ihre Ausführungszeit. Die Einhaltung der Echtzeit-Bedingungen bestimmt die Zuverlässigkeit und Genauigkeit dieser Systeme. Neben den Echtzeit-Bedingungen müssen rekonfigurierbare Echtzeitsysteme zusätzliche Rekonfigurations-Bedingungen erfüllen. Diese Arbeit beschäftigt sich mit rekonfigurierbaren Echtzeitsystemen in Mono- und Multicore-Architekturen. An die Entwicklung dieser Systeme sind verschiedene Anforderungen gestellt. Insbesondere muss die Rekonfigurierbarkeit beachtet werden. Dabei sind aber Echtzeit-Bedingungen und Ressourcenbeschränkungen weiterhin zu beachten. Darüber hinaus werden die Kosten für die Entwicklung dieser Systeme insbesondere durch falsche Designentscheidungen in den frühen Phasen der Entwicklung stark beeinträchtigt. Das Hauptziel in dieser Arbeit liegt deshalb auf der Bereitstellung von Handlungsempfehlungen, Methoden und Werkzeugen für die zielgerichtete Entwicklung von realisierbaren rekonfigurierbaren Echtzeitsystemen in Mono- und Multicore-Architekturen. Um diese Herausforderungen zu adressieren wird eine neue Strategie vorgeschlagen, die 1) die Funktionsallokation, 2) die Platzierung und das Scheduling von Tasks, 3) einen Optimierungsschritt auf der Basis von Mixed Integer Linear Programming (MILP) und 4) eine entscheidungsunterstützende Lösung umfasst, die den Designern hilft, eine realisierbare rekonfigurierbare Echtzeitlösung von der Spezifikationsebene bis zur Implementierungsebene zu entwickeln. Die vorgeschlagene Methodik wird auf eine Fallstudie angewendet und mit verwandten Arbeiten vergliche
    • …
    corecore