2,331 research outputs found

    Scheduling of data-intensive workloads in a brokered virtualized environment

    Full text link
    Providing performance predictability guarantees is increasingly important in cloud platforms, especially for data-intensive applications, for which performance depends greatly on the available rates of data transfer between the various computing/storage hosts underlying the virtualized resources assigned to the application. With the increased prevalence of brokerage services in cloud platforms, there is a need for resource management solutions that consider the brokered nature of these workloads, as well as the special demands of their intra-dependent components. In this paper, we present an offline mechanism for scheduling batches of brokered data-intensive workloads, which can be extended to an online setting. The objective of the mechanism is to decide on a packing of the workloads in a batch that minimizes the broker's incurred costs, Moreover, considering the brokered nature of such workloads, we define a payment model that provides incentives to these workloads to be scheduled as part of a batch, which we analyze theoretically. Finally, we evaluate the proposed scheduling algorithm, and exemplify the fairness of the payment model in practical settings via trace-based experiments

    MorphoSys: efficient colocation of QoS-constrained workloads in the cloud

    Full text link
    In hosting environments such as IaaS clouds, desirable application performance is usually guaranteed through the use of Service Level Agreements (SLAs), which specify minimal fractions of resource capacities that must be allocated for unencumbered use for proper operation. Arbitrary colocation of applications with different SLAs on a single host may result in inefficient utilization of the host’s resources. In this paper, we propose that periodic resource allocation and consumption models -- often used to characterize real-time workloads -- be used for a more granular expression of SLAs. Our proposed SLA model has the salient feature that it exposes flexibilities that enable the infrastructure provider to safely transform SLAs from one form to another for the purpose of achieving more efficient colocation. Towards that goal, we present MORPHOSYS: a framework for a service that allows the manipulation of SLAs to enable efficient colocation of arbitrary workloads in a dynamic setting. We present results from extensive trace-driven simulations of colocated Video-on-Demand servers in a cloud setting. These results show that potentially-significant reduction in wasted resources (by as much as 60%) are possible using MORPHOSYS.National Science Foundation (0720604, 0735974, 0820138, 0952145, 1012798

    A multi-objective optimization scheduling method based on the ant colony algorithm in cloud computing

    Get PDF
    Abstract: For task-scheduling problems in cloud computing, a multi-objective optimization method is proposed here. First, with an aim toward the biodiversity of resources and tasks in cloud computing, we propose a resource cost model that defines the demand of tasks on resources with more details. This model reflects the relationship between the user's resource costs and the budget costs. A multi-objective optimization scheduling method has been proposed based on this resource cost model. This method considers the makespan and the user's budget costs as constraints of the optimization problem, achieving multi-objective optimization of both performance and cost. An improved ant colony algorithm has been proposed to solve this problem. Two constraint functions were used to evaluate and provide feedback regarding the performance and budget cost. These two constraint functions made the algorithm adjust the quality of the solution in a timely manner based on feedback in order to achieve the optimal solution. Some simulation experiments were designed to evaluate this method's performance using four metrics: 1) the makespan; 2) cost; 3) deadline violation rate; and 4) resource utilization. Experimental results show that based on these four metrics, a multi-objective optimization method is better than other similar methods, especially as it increased 56.6% in the best case scenario

    Towards Deadline Guaranteed Cloud Storage Services

    Get PDF
    More and more organizations move their data and workload to commercial cloud storage systems. However, the multiplexing and sharing of the resources in a cloud storage system present unpredictable data access latency to tenants, which may make online data-intensive applications unable to satisfy their deadline requirements. Thus, it is important for cloud storage systems to provide deadline guaranteed services. In this paper, to meet a current form of service level objective (SLO) that constrains the percentage of each tenant\u27s data access requests failing to meet its required deadline below a given threshold, we build a mathematical model to derive the upper bound of acceptable request arrival rate on each server. We then propose a Deadline Guaranteed storage service (called DGCloud) that incorporates three algorithms. Its deadline-aware load balancing scheme redirects requests and creates replicas to release the excess load of each server beyond the derived upper bound. Its workload consolidation algorithm tries to maximally reduce servers while still satisfying the SLO to maximize the resource utilization. Its data placement optimization algorithm re-schedules the data placement to minimize the transmission cost of data replication. Our trace-driven experiments in simulation and Amazon EC2 show the higher performance of DGCloud compared with previous methods in terms of deadline guarantees and system resource utilization, and the effectiveness of its individual algorithms

    Efficient Task Scheduling and Fair Load Distribution Among Federated Clouds

    Get PDF
    The federated cloud is the future generation of cloud computing, allowing sharing of computing and storage resources, and servicing of user tasks among cloud providers through a centralized control mechanism. However, a great challenge lies in the efficient management of such federated clouds and fair distribution of the load among heterogeneous cloud providers. In our proposed approach, called QPFS_MASG, at the federated cloud level, the incoming tasks queue are partitioned in order to achieve a fair distribution of the load among all cloud providers of the federated cloud. Then, at the cloud level, task scheduling using the Modified Activity Selection by Greedy (MASG) technique assigns the tasks to different virtual machines (VMs), considering the task deadline as the key factor in achieving good quality of service (QoS). The proposed approach takes care of servicing tasks within their deadline, reducing service level agreement (SLA) violations, improving the response time of user tasks as well as achieving fair distribution of the load among all participating cloud providers. The QPFS_MASG was implemented using CloudSim and the evaluation result revealed a guaranteed degree of fairness in service distribution among the cloud providers with reduced response time and SLA violations compared to existing approaches. Also, the evaluation results showed that the proposed approach serviced the user tasks with minimum number of VMs
    • …
    corecore