346 research outputs found

    Profit-oriented task scheduling algorithm in Hadoop cluster

    Get PDF

    Scheduling in Mapreduce Clusters

    Get PDF
    MapReduce is a framework proposed by Google for processing huge amounts of data in a distributed environment. The simplicity of the programming model and the fault-tolerance feature of the framework make it very popular in Big Data processing. As MapReduce clusters get popular, their scheduling becomes increasingly important. On one hand, many MapReduce applications have high performance requirements, for example, on response time and/or throughput. On the other hand, with the increasing size of MapReduce clusters, the energy-efficient scheduling of MapReduce clusters becomes inevitable. These scheduling challenges, however, have not been systematically studied. The objective of this dissertation is to provide MapReduce applications with low cost and energy consumption through the development of scheduling theory and algorithms, energy models, and energy-aware resource management. In particular, we will investigate energy-efficient scheduling in hybrid CPU-GPU MapReduce clusters. This research work is expected to have a breakthrough in Big Data processing, particularly in providing green computing to Big Data applications such as social network analysis, medical care data mining, and financial fraud detection. The tools we propose to develop are expected to increase utilization and reduce energy consumption for MapReduce clusters. In this PhD dissertation, we propose to address the aforementioned challenges by investigating and developing 1) a match-making scheduling algorithm for improving the data locality of Map- Reduce applications, 2) a real-time scheduling algorithm for heterogeneous Map- Reduce clusters, and 3) an energy-efficient scheduler for hybrid CPU-GPU Map- Reduce cluster. Advisers: Ying Lu and David Swanso

    An Energy Aware Resource Utilization Framework to Control Traffic in Cloud Network and Overloads

    Get PDF
    Energy consumption in cloud computing occur due to the unreasonable way in which tasks are scheduled. So energy aware task scheduling is a major concern in cloud computing as energy consumption results into significant waste of energy, reduce the profit margin and also high carbon emissions which is not environmentally sustainable. Hence, energy efficient task scheduling solutions are required to attain variable resource management, live migration, minimal virtual machine design, overall system efficiency, reduction in operating costs, increasing system reliability, and prompting environmental protection with minimal performance overhead. This paper provides a comprehensive overview of the energy efficient techniques and approaches and proposes the energy aware resource utilization framework to control traffic in cloud networks and overloads

    A cloudification methodology for multidimensional analysis: Implementation and application to a railway power simulator

    Get PDF
    Many scientific areas make extensive use of computer simulations to study complex real-world processes. These computations are typically very resource-intensive and present scalability issues as experiments get larger even in dedicated clusters, since these are limited by their own hardware resources. Cloud computing raises as an option to move forward into the ideal unlimited scalability by providing virtually infinite resources, yet applications must be adapted to this new paradigm. This process of converting and/or migrating an application and its data in order to make use of cloud computing is sometimes known as cloudifying the application. We propose a generalist cloudification method based in the MapReduce paradigm to migrate scientific simulations into the cloud to provide greater scalability. We analysed its viability by applying it to a real-world railway power consumption simulatior and running the resulting implementation on Hadoop YARN over Amazon EC2. Our tests show that the cloudified application is highly scalable and there is still a large margin to improve the theoretical model and its implementations, and also to extend it to a wider range of simulations. We also propose and evaluate a multidimensional analysis tool based on the cloudified application. It generates, executes and evaluates several experiments in parallel, for the same simulation kernel. The results we obtained indicate that out methodology is suitable for resource intensive simulations and multidimensional analysis, as it improves infrastructure’s utilization, efficiency and scalability when running many complex experiments.This work has been partially funded under the grant TIN2013-41350-P of the Spanish Ministry of Economics and Competitiveness, and the COST Action IC1305 "Network for Sustainable Ultrascale Computing Platforms" (NESUS)

    Cloud computing resource scheduling and a survey of its evolutionary approaches

    Get PDF
    A disruptive technology fundamentally transforming the way that computing services are delivered, cloud computing offers information and communication technology users a new dimension of convenience of resources, as services via the Internet. Because cloud provides a finite pool of virtualized on-demand resources, optimally scheduling them has become an essential and rewarding topic, where a trend of using Evolutionary Computation (EC) algorithms is emerging rapidly. Through analyzing the cloud computing architecture, this survey first presents taxonomy at two levels of scheduling cloud resources. It then paints a landscape of the scheduling problem and solutions. According to the taxonomy, a comprehensive survey of state-of-the-art approaches is presented systematically. Looking forward, challenges and potential future research directions are investigated and invited, including real-time scheduling, adaptive dynamic scheduling, large-scale scheduling, multiobjective scheduling, and distributed and parallel scheduling. At the dawn of Industry 4.0, cloud computing scheduling for cyber-physical integration with the presence of big data is also discussed. Research in this area is only in its infancy, but with the rapid fusion of information and data technology, more exciting and agenda-setting topics are likely to emerge on the horizon

    Matching Renewable Energy Supply and Demand in Green Datacenters

    Get PDF
    In this paper, we propose GreenSlot, a scheduler for parallel batch jobs in a datacenter powered by a photovoltaic solar array and the electrical grid (as a backup). GreenSlot predicts the amount of solar energy that will be available in the near future, and schedules the workload to maximize the green energy consumption while meeting the jobs’ deadlines. If grid energy must be used to avoid deadline violations, the scheduler selects times when it is cheap. Our results for both scientific computing workloads and data processing workloads demonstrate that GreenSlot can increase solar energy consumption by up to 117% and decrease energy cost by up to 39%, compared to conventional schedulers. Based on these positive results, we conclude that green datacenters and green-energy-aware scheduling can have a significant role in building a more sustainable IT ecosystem
    • …
    corecore