18 research outputs found

    Adaptive optimal slip ratio estimator for effective braking on a non-uniform condition road

    Get PDF
    In this paper, an adaptive algorithm is developed which senses the road condition change and estimates a (time-varying) optimal braking slip ratio. This is conducted by two on-line simultaneously operating tire-road friction-curve slope calculators: one based on the accelerometer output and the other based on the wheel speed. The required vehicle speed is estimated using a robust sliding-mode observer. Enforcement of the online optimal braking reference is left to an adaptive sliding mode controller to cope with the system strong nonlinearity, time dependency and the speed and friction-coefficient estimation errors. The algorithm is applied to a half model car and the braking performance is examined. The results indicate that the proposed algorithm substantially reduces the stopping time and distance. The performance of the algorithm is verified using different vehicle initial speeds and especially non-uniform road condition where 8% improvement versus the nonadaptive optimal slip ratio algorithm is recorded

    A new passive repetitive controller for discrete-time finite-frequency positive-real systems

    Get PDF
    This work proposes a new repetitive controller for discrete-time finite-frequency positive-real systems which are required to track periodic references or to attenuate periodic disturbances. The main characteristic of the proposed controller is its passivity. This fact implies closed-loop stable behavior when it is used with discrete-time passive plants, but additional conditions must be fulfilled when it is used with a discretetime finite-frequency positive-real plant. These conditions are analyzed and a design procedure is proposed.Peer Reviewe

    Time-of-flight range image measurement in the presence of transverse motion using the Kalman filter

    Get PDF
    Time-of-flight range imaging cameras measure distance to objects in their field of view, but are prone to error when objects move. At least three raw frames are required to obtain one range image, and the standard method is to read out raw frames into separate sets and process to find one range image per set. Motion during the acquisition of a set causes error in the corresponding range image. In this paper, the problem of motion is addressed by regarding the raw data from each pixel as a noisy time series, and using the Kalman filter to efficiently perform time-series analysis. The proposed method adapts to the effects of transverse motion, measuring a sharp range image at each raw frame. The error in the proposed method is less than the traditional approach in 80% of tests, with no detected increase in the STD due to noise. In the qualitative experimental results, the visible blur is reduced

    Optimized active disturbance rejection control for DC-DC buck converters with uncertainties using a reduced-order GPI observer

    Get PDF
    The output voltage regulation problem of a PWM- based DC-DC buck converter under various sources of uncertainties and disturbances is investigated in this paper via an optimized active disturbance rejection control (ADRC) approach. Aiming to practical implementation, a new reduced-order generalized proportional integral (GPI) observer is first designed to estimate the lumped (possibly time-varying) disturbances within the DC- DC circuit. By integrating the disturbance estimation information raised by the reduced-order GPI observer (GPIO) into the output prediction, an optimized ADRC method is developed to achieve optimized tracking performance even in the presence of distur- bances and uncertainties. It is shown that the proposed controller will guarantee the rigorous stability of closed-loop system, for any bounded uncertainties of the circuit, by appropriately choosing the observer gains and the bandwidthfactor. Experimental results illustrate that the proposed control solution is characterised by improved robustness performance against various disturbances and uncertainties compared to traditional ADRC and integral MPC approaches

    Robust H

    Get PDF
    This paper investigates the problem of robust H∞ fault detection for networked Markov jump systems with random time-delay which is introduced by the network. The random time-delay is modeled as a Markov process, and the networked Markov jump systems are modeled as control systems containing two Markov chains. The delay-dependent fault detection filter is constructed. Furthermore, the sufficient and necessary conditions which make the closed-loop system stochastically stable and achieve prescribed H∞ performance are derived. The method of calculating controller, fault detection filter gain matrices, and the minimal H∞ attenuation level is also obtained. Finally, one numerical example is used to illustrate the effectiveness of the proposed method

    Advances in PID Control

    Get PDF
    Since the foundation and up to the current state-of-the-art in control engineering, the problems of PID control steadily attract great attention of numerous researchers and remain inexhaustible source of new ideas for process of control system design and industrial applications. PID control effectiveness is usually caused by the nature of dynamical processes, conditioned that the majority of the industrial dynamical processes are well described by simple dynamic model of the first or second order. The efficacy of PID controllers vastly falls in case of complicated dynamics, nonlinearities, and varying parameters of the plant. This gives a pulse to further researches in the field of PID control. Consequently, the problems of advanced PID control system design methodologies, rules of adaptive PID control, self-tuning procedures, and particularly robustness and transient performance for nonlinear systems, still remain as the areas of the lively interests for many scientists and researchers at the present time. The recent research results presented in this book provide new ideas for improved performance of PID control applications

    Space Programs Summary No. 37-52, Volume 2 for the Period 1 May to 30 June 1968. the Deep Space Network

    Get PDF
    Mission support, advanced engineering, operations and systems analysis, and technical facilities programs related to Deep Space Networ
    corecore