118 research outputs found

    Integrated radio frequency synthetizers for wireless applications

    Get PDF
    This thesis consists of six publications and an overview of the research topic, which is also a summary of the work. The research described in this thesis concentrates on the design of phase-locked loop radio frequency synthesizers for wireless applications. In particular, the focus is on the implementation of the prescaler, the phase detector, and the chargepump. This work reviews the requirements set for the frequency synthesizer by the wireless standards, and how these requirements are derived from the system specifications. These requirements apply to both integer-N and fractional-N synthesizers. The work also introduces the special considerations related to the design of fractional-N phase-locked loops. Finally, implementation alternatives for the different building blocks of the synthesizer are reviewed. The presented work introduces new topologies for the phase detector and the chargepump, and improved topologies for high speed CMOS prescalers. The experimental results show that the presented topologies can be successfully used in both integer-N and fractional-N synthesizers with state-of-the-art performance. The last part of this work discusses the additional considerations that surface when the synthesizer is integrated into a larger system chip. It is shown experimentally that the synthesizer can be successfully integrated into a complex transceiver IC without sacrificing the performance of the synthesizer or the transceiver.reviewe

    Digital PLL for ISM applications

    Get PDF
    In modern transceivers, a low power PLL is a key block. It is known that with the evolution of technology, lower power and high performance circuitry is a challenging demand. In this thesis, a low power PLL is developed in order not to exceed 2mW of total power consumption. It is composed by small area blocks which is one of the main demands. The blocks that compose the PLL are widely abridged and the final solution is shown, showing why it is employed. The VCO block is a Current-Starved Ring Oscillator with a frequency range from 400MHz to 1.5GHz, with a 300μW to approximately 660μW power consumption. The divider is composed by six TSPC D Flip-Flop in series, forming a divide-by-64 divider. The Phase-Detector is a Dual D Flip-Flop detector with a charge pump. The PLL has less than a 2us lock time and presents a output oscillation of 1GHz, as expected. It also has a total power consumption of 1.3mW, therefore fulfilling all the specifications. The main contributions of this thesis are that this PLL can be applied in ISM applications due to its covering frequency range and low cost 130nm CMOS technology

    Goddard range and range rate system Design evaluation report

    Get PDF
    Tracking and telemetry data at VHF and S band frequencies from spacecraft for GRARR syste

    Quadrature Phase-Domain ADPLL with Integrated On-line Amplitude Locked Loop Calibration for 5G Multi-band Applications

    Get PDF
    5th generation wireless systems (5G) have expanded frequency band coverage with the low-band 5G and mid-band 5G frequencies spanning 600 MHz to 4 GHz spectrum. This dissertation focuses on a microelectronic implementation of CMOS 65 nm design of an All-Digital Phase Lock Loop (ADPLL), which is a critical component for advanced 5G wireless transceivers. The ADPLL is designed to operate in the frequency bands of 600MHz-930MHz, 2.4GHz-2.8GHz and 3.4GHz-4.2GHz. Unique ADPLL sub-components include: 1) Digital Phase Frequency Detector, 2) Digital Loop Filter, 3) Channel Bank Select Circuit, and 4) Digital Control Oscillator. Integrated with the ADPLL is a 90-degree active RC-CR phase shifter with on-line amplitude locked loop (ALL) calibration to facilitate enhanced image rejection while mitigating the effects of fabrication process variations and component mismatch. A unique high-sensitivity high-speed dynamic voltage comparator is included as a key component of the active phase shifter/ALL calibration subsystem. 65nm CMOS technology circuit designs are included for the ADPLL and active phase shifter with simulation performance assessments. Phase noise results for 1 MHz offset with carrier frequencies of 600MHz, 2.4GHz, and 3.8GHz are -130, -122, and -116 dBc/Hz, respectively. Monte Carlo simulations to account for process variations/component mismatch show that the active phase shifter with ALL calibration maintains accurate quadrature phase outputs when operating within the frequency bands 600MHz-930MHz, 2.4GHz-2.8GHz and 3.4GHz-4.2GHz

    A Low Jitter Wideband Fractional-N Subsampling Phase Locked Loop (SSPLL)

    Get PDF
    Frequency synthesizers have become a crucial building block in the evolution of modern communication systems and consumer electronics. The spectral purity performance of frequency synthesizers limits the achievable data-rate and presents a noise-power tradeoff. For communication standards such as LTE where the channel spacing is a few kHz, the synthesizers must provide high frequencies with sufficiently wide frequency tuning range and fine frequency resolutions. Such stringent performance must be met with a limited power and small chip area. In this thesis a wideband fractional-N frequency synthesizer based on a subsampling phase locked loop (SSPLL) is presented. The proposed synthesizer which has a frequency resolution less than 100Hz employs a digital fractional controller (DFC) and a 10-bit digital-to-time converter (DTC) to delay the rising edges of the reference clock to achieve fractional phase lock. For fast convergence of the delay calibration, a novel two-step delay correlation loop (DCL) is employed. Furthermore, to provide optimum settling and jitter performance, the loop transfer characteristics during frequency acquisition and phase-lock are decoupled using a dual input loop filter (DILF). The fractional-N sub-sampling PLL (FNSSPLL) is implemented in a TSMC 40nm CMOS technology and occupies a total active area of 0.41mm^2. The PLL operates over frequency range of 2.8 GHz to 4.3 GHz (42% tuning range) while consuming 9.18mW from a 1.1V supply. The integrated jitter performance is better than 390 fs across all fractional frequency channel. The worst case fractional spur of -48.3 dBc occurs at a 650 kHz offset for a 3.75GHz fractional channel. The in-band phase noise measured at a 200 kHz offset is -112.5 dBc/Hz

    A low power prescaler, phase frequency detector, and charge pump for a 12 ghz frequency synthesizer

    Get PDF
    A low power implementation of a CMOS frequency synthesizer at 12 GHz is an important step to improve the efficiency of a wireless transceiver in this frequency band. Since synthesizers are often employed as reference frequency sources such as local oscillators for up or down-conversion in communications system, their design is especially important for high performance transceiver applications. CMOS PLLs operating at high frequencies consume large amounts of power for proper operation, making power efficiency a top priority in transciever implementation. In response, this thesis presents a low power phase and frequency detector with True Single Phase Clocking by employing the .18μ TSMC process with a 1.8 V supply voltage. A conventional but extremely power efficient nano-watt charge pump is also implemented for additional power savings. Furthermore, a state of the art 16/17 prescaler using Current Mode Logic (CML) D-Flip Flops, CMOS inverters, and transmission gates has been optimized for maximum power savings. The prescaler consists of a 4/5 synchronous core and a feedback loop which modulates the 4/5 core to produce a division ratio of 16/17. Instead of employing power hungry CML, the feedback circuit takes advantage of low power NOR and AND gates realized in Transmission Gate Logic (TGL) to reduce the power consumption. To the best of my knowledge, this technique has never been used in a high frequency prescaler before

    A LINEARIZATION METHOD FOR A UWB VCO-BASED CHIRP GENERATOR USING DUAL COMPENSATION

    Get PDF
    Ultra-Wideband (UWB) chirp generators are used on Frequency Modulated Continuous Wave (FMCW) radar systems for high-resolution and high-accuracy range measurements. At the Center for Remote Sensing of Ice Sheets (CReSIS), we have developed two UWB radar sensors for high resolution measurements of surface elevation and snow cover over Greenland and Antarctica. These radar systems are routinely operated from both surface and airborne platforms. Low cost implementations of UWB chirp generators are possible using an UWB Voltage Controlled Oscillator (VCO). VCOs possess several advantages over other competing technologies, but their frequency-voltage tuning characteristics are inherently non-linear. This nonlinear relationship between the tuning voltage and the output frequency should be corrected with a linearization system to implement a linear frequency modulated (LFM) waveform, also known as a chirp. If the waveform is not properly linearized, undesired additional frequency modulation is found in the waveform. This additional frequency modulation results in undesired sidebands at the frequency spectrum of the Intermediate Frequency (IF) stage of the FMCW radar. Since the spectrum of the filtered IF stage represents the measured range, the uncorrected nonlinear behavior of the VCO will cause a degradation of the range sensing performance of a FMCW radar. This issue is intensified as the chirp rate and nominal range of the target increase. A linearization method has been developed to linearize the output of a VCO-based chirp generator with 6 GHz of bandwidth. The linearization system is composed of a Phase Lock Loop (PLL) and an external compensation added to the loop. The nonlinear behavior of the VCO was treated as added disturbances to the loop, and a wide loop bandwidth PLL was designed for wideband compensation of these disturbances. Moreover, the PLL requires a loop filter able to attenuate the reference spurs. The PLL has been designed with a loop bandwidth as wide as possible while maintaining the reference spur level below 35 dBc. Several design considerations were made for the large loop bandwidth design. Furthermore, the large variations in the tuning sensitivity of the oscillator forced a design with a large phase margin at the average tuning sensitivity. This design constraint degraded the tracking performance of the PLL. A second compensation signal, externally generated, was added to the compensation signal of the PLL. By adding a compensation signal, which was not affected by the frequency response effects of the loop compensation, the loop tracking error is reduced. This technique enabled us to produce an output chirp signal that is a much closer replica of the scaled version of the reference signal. Furthermore, a type 1 PLL was chosen for improved transient response, compared to that of the type 2 PLL. This type of PLL requires an external compensation to obtain a finite steady state error when applying a frequency ramp to the input. The external compensation signal required to solve this issue was included in the second compensation signal mentioned above. Measurements for the PLL performance and the chirp generator performance were performed in the laboratory using a radar demonstrator. The experimental results show that the designed loop bandwidth was successfully achieved without significantly increasing the spurious signal level. The chirp generator measurements show a direct relationship between the bandwidth of the external compensation and the range resolution performance

    Shuttle orbiter S-band communications equipment design evaluation

    Get PDF
    An assessment of S-band communication equipment includes: (1) the review and analysis of the ability of the various subsystem avionic equipment designs to interface with, and operate on signals from/to adjoining equipment; (2) the performance peculiarities of the hardware against the overall specified system requirements; and (3) the evaluation of EMC EMI test results of the various equipment with respect to the possibility of mutual interferences

    Design Techniques of Energy Efficient PLL for Enhanced Noise and Lock Performance

    Get PDF
    Phase locked loops(PLLs)are vital building blocks of communication sys-tems whose performance dictates the quality of communication.The design of PLL to o_er superior performance is the prime objective of this research.It is desirable for the PLL to have fast locking,low noise,low reference spur,wide lock range,low power consumption consuming less silicon area.To achieve these performance parameters simultaneously in a PLL being a challenging task is taken up as a scope of the present work.A comprehensive study of the performance linked PLL components along with their design challenges is made in this report.The phase noise which is directly related to the dead zone of the PLL is minimized using an e_cient phase frequency detector(PFD)in this thesis.Here a voltage variable delay element is inserted in the reset path of the PFD to reduce the dead zone.An adaptive PFD architecture is also proposed to have a low noise and fast PLL simultaneously.In this work,before locking a fast PFD and in the locked state a low noise PFD operates to dictate the phase di_erence of the reference and feedback signals.To reduce the reference spur,a novel charge pump architecture is proposed which eventually reduces the lock time up to a great extent.In this charge pump a single current source is employed to reduce the output current mis-match and transmission gates are used to reduce the non ideal e_ects.Besides this,the fabrication process variations have a predominant e_ect on the PLL performance,which is directly linked to the locking capability.This necessitates a manufacturing process variation tolerant design of the PLL.In this work an e_cient multi-objective optimization method is also applied to at-tain multiple optimal performance objectives.The major performances under consideration are lock time,phase noise,lock range and power consumption
    corecore