1,935 research outputs found

    Machine learning-based agoraphilic navigation algorithm for use in dynamic environments with a moving goal

    Get PDF
    This paper presents a novel development of a new machine learning-based control system for the Agoraphilic (free-space attraction) concept of navigating robots in unknown dynamic environments with a moving goal. Furthermore, this paper presents a new methodology to generate training and testing datasets to develop a machine learning-based module to improve the performances of Agoraphilic algorithms. The new algorithm presented in this paper utilises the free-space attraction (Agoraphilic) concept to safely navigate a mobile robot in a dynamically cluttered environment with a moving goal. The algorithm uses tracking and prediction strategies to estimate the position and velocity vectors of detected moving obstacles and the goal. This predictive methodology enables the algorithm to identify and incorporate potential future growing free-space passages towards the moving goal. This is supported by the new machine learning-based controller designed specifically to efficiently account for the high uncertainties inherent in the robot’s operational environment with a moving goal at a reduced computational cost. This paper also includes comparative and experimental results to demonstrate the improvements of the algorithm after introducing the machine learning technique. The presented experiments demonstrated the success of the algorithm in navigating robots in dynamic environments with the challenge of a moving goal

    Integration of fault tolerance and hardware redundancy techniques into the design of mobile platforms

    Get PDF
    This work addresses the development of a fault-tolerant mobile platform. Fault-tolerant mechanical system design is an emerging technology that attempts to build highly reliable systems by incorporating hardware and software architectures. For this purpose, previous work in fault-tolerant were reviewed. Alternate architectures were evaluated to maximize the fault tolerance capabilities of the driving and steering systems of a mobile platform. The literature review showed that most of the research work on fault tolerance has been done in the area of kinematics and control systems of robotic arms. Therefore, hardware redundancy and fault tolerance in mobile robots is an area to be researched. The prototype constructed as part of this work demonstrated basic principles and uses of a fault-tolerant mechanism, and is believed to be the first such system in its class. It is recommended that different driving and steering architectures, and the fault-tolerant controllers\u27 performance be tested on this prototype

    Proceedings of the 4th field robot event 2006, Stuttgart/Hohenheim, Germany, 23-24th June 2006

    Get PDF
    Zeer uitgebreid verslag van het 4e Fieldrobotevent, dat gehouden werd op 23 en 24 juni 2006 in Stuttgart/Hohenhei

    Sampling-based Multi-robot Motion Planning

    Get PDF
    International audienceThis paper describes a sampling-based approach to multi-robot motion planning. The proposed approach is centralized, which aims to reduce interference between mobile robots such as collision, congestion and deadlock, by increasing the number of waypoints. The implementation based on occupancy grid map is decomposed into three steps: the first step is to identify primary waypoints by using the Voronoi diagram, the second step is to generate additional waypoints by sampling the Voronoi diagram, and the last step is to assign the waypoints to robots by using the Hungarian method. The approach has been implemented and tested in simulation and the experimental results show a good system performance for multi-robot motion planning

    Autonomous navigation in unstructured environments using an arm-mounted camera for target localization

    Get PDF
    openAutonomous mobile robots became over the recent years a popular topic of research mainly for their capacity to perform tasks in complete autonomy without the constant intervention of an human operator. In this context, autonomous navigation represents one of the main studied branch of autonomous robotics. Autonomous navigation in both structured and unstructured environments have been widely researched over years, with the development of several techniques that tries to solve this problem. In this context, there are several components that are required to get the proper solution to the navigation problem, and one of these is represented by the knowledge of the final position that an autonomous robot has to reach inside an environment. In this thesis, the goal is to enhance the autonomous capabilities of a robot by making it able to detect and follow constantly a target placed inside an unstructured environment. This result is obtained using a camera installed as end-effector of a robotic arm, which in turn is installed on top of a mobile robot. All the methodologies as well as the tools that have been used in the development of this project are presented in this thesis. The evaluation of the performances of the algorithm are performed both in a static context, where the robot is fixed and the target is free to move, and in a dynamic context where the robot moves and the target is fixed. The motion of the robot is obtained using an innovative algorithm for navigation in unstructured environments, NAPVIG. The proposed approach has been implemented using ROS and been tested both in a simulated environment using Gazebo as well as in a real world scenario. The results obtained from both type of experiments will be presented and discussed.Autonomous mobile robots became over the recent years a popular topic of research mainly for their capacity to perform tasks in complete autonomy without the constant intervention of an human operator. In this context, autonomous navigation represents one of the main studied branch of autonomous robotics. Autonomous navigation in both structured and unstructured environments have been widely researched over years, with the development of several techniques that tries to solve this problem. In this context, there are several components that are required to get the proper solution to the navigation problem, and one of these is represented by the knowledge of the final position that an autonomous robot has to reach inside an environment. In this thesis, the goal is to enhance the autonomous capabilities of a robot by making it able to detect and follow constantly a target placed inside an unstructured environment. This result is obtained using a camera installed as end-effector of a robotic arm, which in turn is installed on top of a mobile robot. All the methodologies as well as the tools that have been used in the development of this project are presented in this thesis. The evaluation of the performances of the algorithm are performed both in a static context, where the robot is fixed and the target is free to move, and in a dynamic context where the robot moves and the target is fixed. The motion of the robot is obtained using an innovative algorithm for navigation in unstructured environments, NAPVIG. The proposed approach has been implemented using ROS and been tested both in a simulated environment using Gazebo as well as in a real world scenario. The results obtained from both type of experiments will be presented and discussed

    Simulation in Automated Guided Vehicle System Design

    Get PDF
    The intense global competition that manufacturing companies face today results in an increase of product variety and shorter product life cycles. One response to this threat is agile manufacturing concepts. This requires materials handling systems that are agile and capable of reconfiguration. As competition in the world marketplace becomes increasingly customer-driven, manufacturing environments must be highly reconfigurable and responsive to accommodate product and process changes, with rigid, static automation systems giving way to more flexible types. Automated Guided Vehicle Systems (AGVS) have such capabilities and AGV functionality has been developed to improve flexibility and diminish the traditional disadvantages of AGV-systems. The AGV-system design is however a multi-faceted problem with a large number of design factors of which many are correlating and interdependent. Available methods and techniques exhibit problems in supporting the whole design process. A research review of the work reported on AGVS development in combination with simulation revealed that of 39 papers only four were industrially related. Most work was on the conceptual design phase, but little has been reported on the detailed simulation of AGVS. Semi-autonomous vehicles (SA V) are an innovative concept to overcome the problems of inflexible -systems and to improve materials handling functionality. The SA V concept introduces a higher degree of autonomy in industrial AGV -systems with the man-in-the-Ioop. The introduction of autonomy in industrial applications is approached by explicitly controlling the level of autonomy at different occasions. The SA V s are easy to program and easily reconfigurable regarding navigation systems and material handling equipment. Novel approaches to materials handling like the SA V -concept place new requirements on the AGVS development and the use of simulation as a part of the process. Traditional AGV -system simulation approaches do not fully meet these requirements and the improved functionality of AGVs is not used to its full power. There is a considerflble potential in shortening the AGV -system design-cycle, and thus the manufacturing system design-cycle, and still achieve more accurate solutions well suited for MRS tasks. Recent developments in simulation tools for manufacturing have improved production engineering development and the tools are being adopted more widely in industry. For the development of AGV -systems this has not fully been exploited. Previous research has focused on the conceptual part of the design process and many simulation approaches to AGV -system design lack in validity. In this thesis a methodology is proposed for the structured development of AGV -systems using simulation. Elements of this methodology address the development of novel functionality. The objective of the first research case of this research study was to identify factors for industrial AGV -system simulation. The second research case focuses on simulation in the design of Semi-autonomous vehicles, and the third case evaluates a simulation based design framework. This research study has advanced development by offering a framework for developing testing and evaluating AGV -systems, based on concurrent development using a virtual environment. The ability to exploit unique or novel features of AGVs based on a virtual environment improves the potential of AGV-systems considerably.University of Skovde. European Commission for funding the INCO/COPERNICUS Projec

    Intelligent Robotics Navigation System: Problems, Methods, and Algorithm

    Get PDF
    This paper set out to supplement new studies with a brief and comprehensible review of the advanced development in the area of the navigation system, starting from a single robot, multi-robot, and swarm robots from a particular perspective by taking insights from these biological systems. The inspiration is taken from nature by observing the human and the social animal that is believed to be very beneficial for this purpose. The intelligent navigation system is developed based on an individual characteristic or a social animal biological structure. The discussion of this paper will focus on how simple agent’s structure utilizes flexible and potential outcomes in order to navigate in a productive and unorganized surrounding. The combination of the navigation system and biologically inspired approach has attracted considerable attention, which makes it an important research area in the intelligent robotic system. Overall, this paper explores the implementation, which is resulted from the simulation performed by the embodiment of robots operating in real environments

    Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS 1994), volume 1

    Get PDF
    The AIAA/NASA Conference on Intelligent Robotics in Field, Factory, Service, and Space (CIRFFSS '94) was originally proposed because of the strong belief that America's problems of global economic competitiveness and job creation and preservation can partly be solved by the use of intelligent robotics, which are also required for human space exploration missions. Individual sessions addressed nuclear industry, agile manufacturing, security/building monitoring, on-orbit applications, vision and sensing technologies, situated control and low-level control, robotic systems architecture, environmental restoration and waste management, robotic remanufacturing, and healthcare applications

    Punctual versus continuous auction coordination for multi-robot and multi-task topological navigation

    Get PDF
    International audienceThis paper addresses the interest of using Punctual versus Continuous coordination for mobile multi-robot systems where robots use auction sales to allocate tasks between them and to compute their policies in a distributed way. In Continuous coordination, one task at a time is assigned and performed per robot. In Punctual coordination, all the tasks are distributed in Rendezvous phases during the mission execution. However , tasks allocation problem grows exponentially with the number of tasks. The proposed approach consists in two aspects: (1) a control architecture based on topo-logical representation of the environment which reduces the planning complexity and (2) a protocol based on Sequential Simultaneous Auctions (SSA) to coordinate Robots' policies. The policies are individually computed using Markov Decision Processes oriented by several goal-task positions to reach. Experimental results on both real robots and simulation describe an evaluation of the proposed robot architecture coupled wih the SSA protocol. The efficiency of missions' execution is empirically evaluated regarding continuous planning
    • …
    corecore