663 research outputs found

    Managing big data experiments on smartphones

    Get PDF
    The explosive number of smartphones with ever growing sensing and computing capabilities have brought a paradigm shift to many traditional domains of the computing field. Re-programming smartphones and instrumenting them for application testing and data gathering at scale is currently a tedious and time-consuming process that poses significant logistical challenges. Next generation smartphone applications are expected to be much larger-scale and complex, demanding that these undergo evaluation and testing under different real-world datasets, devices and conditions. In this paper, we present an architecture for managing such large-scale data management experiments on real smartphones. We particularly present the building blocks of our architecture that encompassed smartphone sensor data collected by the crowd and organized in our big data repository. The given datasets can then be replayed on our testbed comprising of real and simulated smartphones accessible to developers through a web-based interface. We present the applicability of our architecture through a case study that involves the evaluation of individual components that are part of a complex indoor positioning system for smartphones, coined Anyplace, which we have developed over the years. The given study shows how our architecture allows us to derive novel insights into the performance of our algorithms and applications, by simplifying the management of large-scale data on smartphones

    Enhanced Indoor Localization System based on Inertial Navigation

    Get PDF
    An algorithm for indoor localization of pedestrians using an improved Inertial Navigation system is presented for smartphone based applications. When using standard inertial navigation algorithm, errors in sensors due to random noise and bias result in a large drift from the actual location with time. Novel corrections are introduced for the basic system to increase the accuracy by counteracting the accumulation of this drift error, which are applied using a Kalman filter framework. A generalized velocity model was applied to correct the walking velocity and the accuracy of the algorithm was investigated with three different velocity models which were derived from the actual velocity measured at the hip of walking person. Spatial constraints based on knowledge of indoor environment were applied to correct the walking direction. Analysis of absolute heading corrections from magnetic direction was performed . Results show that the proposed method with Gaussian velocity model achieves competitive accuracy with a 30\% less variance over Step and Heading approach proving the accuracy and robustness of proposed method. We also investigated the frequency of applying corrections and found that a 4\% corrections per step is required for improved accuracy. The proposed method is applicable in indoor localization and tracking applications based on smart phone where traditional approaches such as GNSS suffers from many issues

    Integração de localização baseada em movimento na aplicação móvel EduPARK

    Get PDF
    More and more, mobile applications require precise localization solutions in a variety of environments. Although GPS is widely used as localization solution, it may present some accuracy problems in special conditions such as unfavorable weather or spaces with multiple obstructions such as public parks. For these scenarios, alternative solutions to GPS are of extreme relevance and are widely studied recently. This dissertation studies the case of EduPARK application, which is an augmented reality application that is implemented in the Infante D. Pedro park in Aveiro. Due to the poor accuracy of GPS in this park, the implementation of positioning and marker-less augmented reality functionalities presents difficulties. Existing relevant systems are analyzed, and an architecture based on pedestrian dead reckoning is proposed. The corresponding implementation is presented, which consists of a positioning solution using the sensors available in the smartphones, a step detection algorithm, a distance traveled estimator, an orientation estimator and a position estimator. For the validation of this solution, functionalities were implemented in the EduPARK application for testing purposes and usability tests performed. The results obtained show that the proposed solution can be an alternative to provide accurate positioning within the Infante D. Pedro park, thus enabling the implementation of functionalities of geocaching and marker-less augmented reality.Cada vez mais, as aplicações móveis requerem soluções de localização precisa nos mais variados ambientes. Apesar de o GPS ser amplamente usado como solução para localização, pode apresentar alguns problemas de precisão em condições especiais, como mau tempo, ou espaços com várias obstruções, como parques públicos. Para estes casos, soluções alternativas ao GPS são de extrema relevância e veem sendo desenvolvidas. A presente dissertação estuda o caso do projeto EduPARK, que é uma aplicação móvel de realidade aumentada para o parque Infante D. Pedro em Aveiro. Devido à fraca precisão do GPS nesse parque, a implementação de funcionalidades baseadas no posionamento e de realidade aumentada sem marcadores apresenta dificuldades. São analisados sistemas relevantes existentes e é proposta uma arquitetura baseada em localização de pedestres. Em seguida é apresentada a correspondente implementação, que consiste numa solução de posicionamento usando os sensores disponiveis nos smartphones, um algoritmo de deteção de passos, um estimador de distância percorrida, um estimador de orientação e um estimador de posicionamento. Para a validação desta solução, foram implementadas funcionalidades na aplicação EduPARK para fins de teste, e realizados testes com utilizadores e testes de usabilidade. Os resultados obtidos demostram que a solução proposta pode ser uma alternativa para a localização no interior do parque Infante D. Pedro, viabilizando desta forma a implementação de funcionalidades baseadas no posicionamento e de realidade aumenta sem marcadores.EduPARK é um projeto financiado por Fundos FEDER através do Programa Operacional Competitividade e Internacionalização - COMPETE 2020 e por Fundos Nacionais através da FCT - Fundação para a Ciência e a Tecnologia no âmbito do projeto POCI-01-0145-FEDER-016542.Mestrado em Engenharia Informátic

    Smartphone relative positioning using phone sensors

    Get PDF

    Social-Loc: Improving indoor localization with social sensing

    Get PDF
    Location-based services, such as targeted advertisement, geo-social networking and emergency services, are becoming in-creasingly popular for mobile applications. While GPS pro-vides accurate outdoor locations, accurate indoor localiza-tion schemes still require either additional infrastructure support (e.g., ranging devices) or extensive training before system deployment (e.g., WiFi signal fingerprinting). In or-der to help existing localization systems to overcome their limitations or to further improve their accuracy, we propose Social-Loc, a middleware that takes the potential locations for individual users, which is estimated by any underlying indoor localization system as input and exploits both so-cial encounter and non-encounter events to cooperatively calibrate the estimation errors. We have fully implemented Social-Loc on the Android platform and demonstrated its performance on two underlying indoor localization systems: Dead-reckoning and WiFi fingerprint. Experiment results show that Social-Loc improves user’s localization accuracy of WiFi fingerprint and dead-reckoning by at least 22 % and 37%, respectively. Large-scale simulation results indicate Social-Loc is scalable, provides good accuracy for a long du-ration of time, and is robust against measurement errors

    Data-Driven Meets Navigation: Concepts, Models, and Experimental Validation

    Full text link
    The purpose of navigation is to determine the position, velocity, and orientation of manned and autonomous platforms, humans, and animals. Obtaining accurate navigation commonly requires fusion between several sensors, such as inertial sensors and global navigation satellite systems, in a model-based, nonlinear estimation framework. Recently, data-driven approaches applied in various fields show state-of-the-art performance, compared to model-based methods. In this paper we review multidisciplinary, data-driven based navigation algorithms developed and experimentally proven at the Autonomous Navigation and Sensor Fusion Lab (ANSFL) including algorithms suitable for human and animal applications, varied autonomous platforms, and multi-purpose navigation and fusion approachesComment: 22 pages, 13 figure

    Use Of Smartphones for Ensuring Vulnerable Road User Safety through Path Prediction and Early Warning: An In-Depth Review of Capabilities, Limitations and Their Applications in Cooperative Intelligent Transport Systems

    Get PDF
    The field of cooperative intelligent transport systems and more specifically pedestrians to vehicles could be characterized as quite challenging, since there is a broad research area to be studied, with direct positive results to society. Pedestrians to vehicles is a type of cooperative intelligent transport system, within the group of early warning collision/safety system. In this article, we examine the research and applications carried out so far within the field of pedestrians to vehicles cooperative transport systems by leveraging the information coming from vulnerable road users’ smartphones. Moreover, an extensive literature review has been carried out in the fields of vulnerable road users outdoor localisation via smartphones and vulnerable road users next step/movement prediction, which are closely related to pedestrian to vehicle applications and research. We identify gaps that exist in these fields that could be improved/extended/enhanced or newly developed, while we address future research objectives and methodologies that could support the improvement/development of those identified gaps
    corecore