1,373 research outputs found

    Automated Video Analysis of Animal Movements Using Gabor Orientation Filters

    Get PDF
    To quantify locomotory behavior, tools for determining the location and shape of an animal’s body are a first requirement. Video recording is a convenient technology to store raw movement data, but extracting body coordinates from video recordings is a nontrivial task. The algorithm described in this paper solves this task for videos of leeches or other quasi-linear animals in a manner inspired by the mammalian visual processing system: the video frames are fed through a bank of Gabor filters, which locally detect segments of the animal at a particular orientation. The algorithm assumes that the image location with maximal filter output lies on the animal’s body and traces its shape out in both directions from there. The algorithm successfully extracted location and shape information from video clips of swimming leeches, as well as from still photographs of swimming and crawling snakes. A Matlab implementation with a graphical user interface is available online, and should make this algorithm conveniently usable in many other contexts

    Local picture-repetition mode detector for video de-interlacing

    Get PDF
    The de-interlacing of video material converted from film can be perfect, provided it is possible to recognize the field-pairs that originate from the same film image. Various so-called film-detectors have been proposed for this purpose, mainly in the patent-literature. Typically, these detectors fail in cases where video overlays are merged with film material, or when nonstandard repetition patterns are used. Both problems occur frequently in television broadcast. For these hybrid and/or irregular cases, we propose a detector that can detect different picture-repetition patterns locally in the image. This detector combines fuzzy logic rules and spatio-temporal prediction to arrive at a highly robust decision signal, suitable for pixel-accurate de-interlacing of hybrid and irregular video material. In addition to an evaluation of the performance, the paper also provides a complexity analysis.Peer Reviewe

    A Review Paper on Video De-Interlacing Multiple Techniques

    Get PDF
    In this paper present video interlacing de-interlacing and various techniques. Focus on the different techniques of video De- Interlacing that are Intra Field, Inter Field, Motion Adaptive, Motion Compensated De- interlacing and Spatio-Temporal Interpolation. De- Interlaced video use the full resolution of each scan so produced high quality image and remove flicker problem. Techniques are work on the scan line of object Intra Field techniques use pixels of the moving object, Inter Field works on stationary regions of object, Motion Adaptive works on the edge of the Object and Motion Compensation focus video sequence and brightness variation. Advantage of using De-interlacing technique is: Better Moving object image, no flickers and high vertical resolution

    A reconfigurable frame interpolation hardware architecture for high definition video

    Get PDF
    Since Frame Rate Up-Conversion (FRC) is started to be used in recent consumer electronics products like High Definition TV, real-time and low cost implementation of FRC algorithms has become very important. Therefore, in this paper, we propose a low cost hardware architecture for realtime implementation of frame interpolation algorithms. The proposed hardware architecture is reconfigurable and it allows adaptive selection of frame interpolation algorithms for each Macroblock. The proposed hardware architecture is implemented in VHDL and mapped to a low cost Xilinx XC3SD1800A-4 FPGA device. The implementation results show that the proposed hardware can run at 101 MHz on this FPGA and consumes 32 BRAMs and 15384 slices

    Generalized motion and edge adaptive interpolation de-interlacing algorithm

    Get PDF
    This paper presents a generalized motion and edge adaptive de-interlacing framework, which offers a structured way to develop de-interlacing algorithm. The framework encompasses many typical de-interlacing algorithms, ranging from simple interpolation based algorithms, to more complex edge dependent and motion adaptive algorithms. Based on this framework, we develop a new de-interlacing algorithm which is efficient and artifacts-free. The proposed algorithm was evaluated by five video sequences, namely, "Akiyo", Mother and Daughter", "Silent", "Foreman" and "Stefan". Experimental results confirm that the proposed algorithm performs, both objectively and subjectively, much better than other similar algorithms. These promising results indicate that the proposed framework has good potential for realizing even better de-interlacing algorithms.postprin

    Local picture-repetition mode detector for video de-interlacing

    Get PDF
    The de-interlacing of video material converted from film can be perfect, provided it is possible to recognize the field-pairs that originate from the same film image. Various so-called film-detectors have been proposed for this purpose, mainly in the patent-literature. Typically, these detectors fail in cases where video overlays are merged with film material, or when nonstandard repetition patterns are used. Both problems occur frequently in television broadcast. For these hybrid and/or irregular cases, we propose a detector that can detect different picture-repetition patterns locally in the image. This detector combines fuzzy logic rules and spatio-temporal prediction to arrive at a highly robust decision signal, suitable for pixel-accurate de-interlacing of hybrid and irregular video material. In addition to an evaluation of the performance, the paper also provides a complexity analysis

    Motion and edge adaptive interpolation de-interlacing algorithm

    Get PDF
    This paper presents a new motion and edge adaptive de-interlacing algorithm, which is efficient and artifacts-free. It is novel in the sense that it introduces a way to properly interpolate the two (odd and even) field images according to the information provided by the simplest form of motion detection and edge orientation estimation methods. The proposed algorithm was evaluated by three video sequences, namely, 'Akiyo', 'Silent', 'Foreman'. Experimental results confirm that the proposed algorithm performs, both objectively and subjectively, much better than other similar algorithms. These promising results indicate that the proposed interpolation approach has good potential to realize even better de-interlacing algorithms, if more sophisticated motion detection and edge orientation estimation methods are employed.postprintThe 10th WSEAS international conference on Computers (ICCOMP'06), Athens, Greece, 13-15 July 2006. In Proceedings of ICCOMP, 2006, p. 1030-103
    • …
    corecore