619 research outputs found

    Anatomy and evolution of database search engines — a central component of mass spectrometry based proteomic workflows

    Get PDF
    Sequence database search engines are bioinformatics algorithms that identify peptides from tandem mass spectra using a reference protein sequence database. Two decades of development, notably driven by advances in mass spectrometry, have provided scientists with more than 30 published search engines, each with its own properties. In this review, we present the common paradigm behind the different implementations, and its limitations for modern mass spectrometry datasets. We also detail how the search engines attempt to alleviate these limitations, and provide an overview of the different software frameworks available to the researcher. Finally, we highlight alternative approaches for the identification of proteomic mass spectrometry datasets, either as a replacement for, or as a complement to, sequence database search engines.acceptedVersio

    Bayesian methods for small molecule identification

    Get PDF
    Confident identification of small molecules remains a major challenge in untargeted metabolomics, natural product research and related fields. Liquid chromatography-tandem mass spectrometry is a predominant technique for the high-throughput analysis of small molecules and can detect thousands of different compounds in a biological sample. The automated interpretation of the resulting tandem mass spectra is highly non-trivial and many studies are limited to re-discovering known compounds by searching mass spectra in spectral reference libraries. But these libraries are vastly incomplete and a large portion of measured compounds remains unidentified. This constitutes a major bottleneck in the comprehensive, high-throughput analysis of metabolomics data. In this thesis, we present two computational methods that address different steps in the identification process of small molecules from tandem mass spectra. ZODIAC is a novel method for de novo that is, database-independent molecular formula annotation in complete datasets. It exploits similarities of compounds co-occurring in a sample to find the most likely molecular formula for each individual compound. ZODIAC improves on the currently best-performing method SIRIUS; on one dataset by 16.5 fold. We show that de novo molecular formula annotation is not just a theoretical advantage: We discover multiple novel molecular formulas absent from PubChem, one of the biggest structure databases. Furthermore, we introduce a novel scoring for CSI:FingerID, a state-of-the-art method for searching tandem mass spectra in a structure database. This scoring models dependencies between different molecular properties in a predicted molecular fingerprint via Bayesian networks. This problem has the unusual property, that the marginal probabilities differ for each predicted query fingerprint. Thus, we need to apply Bayesian networks in a novel, non-standard fashion. Modeling dependencies improves on the currently best scoring

    De novo sequencing of heparan sulfate saccharides using high-resolution tandem mass spectrometry

    Get PDF
    Heparan sulfate (HS) is a class of linear, sulfated polysaccharides located on cell surface, secretory granules, and in extracellular matrices found in all animal organ systems. It consists of alternately repeating disaccharide units, expressed in animal species ranging from hydra to higher vertebrates including humans. HS binds and mediates the biological activities of over 300 proteins, including growth factors, enzymes, chemokines, cytokines, adhesion and structural proteins, lipoproteins and amyloid proteins. The binding events largely depend on the fine structure - the arrangement of sulfate groups and other variations - on HS chains. With the activated electron dissociation (ExD) high-resolution tandem mass spectrometry technique, researchers acquire rich structural information about the HS molecule. Using this technique, covalent bonds of the HS oligosaccharide ions are dissociated in the mass spectrometer. However, this information is complex, owing to the large number of product ions, and contains a degree of ambiguity due to the overlapping of product ion masses and lability of sulfate groups; as a result, there is a serious barrier to manual interpretation of the spectra. The interpretation of such data creates a serious bottleneck to the understanding of the biological roles of HS. In order to solve this problem, I designed HS-SEQ - the first HS sequencing algorithm using high-resolution tandem mass spectrometry. HS-SEQ allows rapid and confident sequencing of HS chains from millions of candidate structures and I validated its performance using multiple known pure standards. In many cases, HS oligosaccharides exist as mixtures of sulfation positional isomers. I therefore designed MULTI-HS-SEQ, an extended version of HS-SEQ targeting spectra coming from more than one HS sequence. I also developed several pre-processing and post-processing modules to support the automatic identification of HS structure. These methods and tools demonstrated the capacity for large-scale HS sequencing, which should contribute to clarifying the rich information encoded by HS chains as well as developing tailored HS drugs to target a wide spectrum of diseases

    Methods in automated glycosaminoglycan tandem mass spectra analysis

    Get PDF
    Glycosylation is the process by which a glycan is enzymatically attached to a protein, and is one of the most common post-translational modifications in nature. One class of glycans is the glycosaminoglycans (GAGs), which are long, linear polysaccharides that are variably sulfated and make up the glycan portion of proteoglycans (PGs). PGs are located on the cellular surface and in the extracellular matrix (ECM), making them important molecules for cell signaling and ligand binding. The GAG sulfation sequence is a determining factor for the signaling capacity of binding complexes, so accurate determination of the sequence is critical. Historically, GAG sequencing using tandem mass spectrometry (MS2) has been a difficult, manual process; however, with the advent of faster computational techniques and higher-resolution MS2, high-throughput GAG sequencing is within reach. Two steps in the pipeline of biomolecule sequencing using MS2 are discovery and interpretation of spectral peaks. The discovery step traditionally is performed using methods that rely on the concept of averagine, or the average molecular building block for the analyte in question. These methods were developed for protein sequencing, but perform considerably worse on GAG sequences, due to the non-uniform distribution of sulfur atoms along the chain and the relatively high isotope abundance of 34S. The interpretation step traditionally is performed manually, which takes time and introduces potential user error. To combat these problems, I developed GAGfinder, the first GAG-specific MS2 peak finding and annotation software. GAGfinder is described in detail in chapter two. Another step in MS2 sequencing is the determination of the sequence using the found MS2 fragments. For a given GAG composition, there are many possible sequences, and peak finding algorithms such as GAGfinder return a list of the peaks in the MS2 mass spectrum. The many-to-many relationship between sequences and fragments can be represented using a bipartite network, and node-ranking techniques can be employed to generate likelihood scores for possible sequences. I developed a bipartite network-based sequencing tool, GAGrank, based on a bipartite network extension of Google’s PageRank algorithm for ranking websites. GAGrank is described in detail in chapter three

    Cooperative Metaheuristics for Exploring Proteomic Data

    Get PDF
    Most combinatorial optimization problems cannotbe solved exactly. A class of methods, calledmetaheuristics, has proved its efficiency togive good approximated solutions in areasonable time. Cooperative metaheuristics area sub-set of metaheuristics, which implies aparallel exploration of the search space byseveral entities with information exchangebetween them. The importance of informationexchange in the optimization process is relatedto the building block hypothesis ofevolutionary algorithms, which is based onthese two questions: what is the pertinentinformation of a given potential solution andhow this information can be shared? Aclassification of cooperative metaheuristicsmethods depending on the nature of cooperationinvolved is presented and the specificproperties of each class, as well as a way tocombine them, is discussed. Severalimprovements in the field of metaheuristics arealso given. In particular, a method to regulatethe use of classical genetic operators and todefine new more pertinent ones is proposed,taking advantage of a building block structuredrepresentation of the explored space. Ahierarchical approach resting on multiplelevels of cooperative metaheuristics is finallypresented, leading to the definition of acomplete concerted cooperation strategy. Someapplications of these concepts to difficultproteomics problems, including automaticprotein identification, biological motifinference and multiple sequence alignment arepresented. For each application, an innovativemethod based on the cooperation concept isgiven and compared with classical approaches.In the protein identification problem, a firstlevel of cooperation using swarm intelligenceis applied to the comparison of massspectrometric data with biological sequencedatabase, followed by a genetic programmingmethod to discover an optimal scoring function.The multiple sequence alignment problem isdecomposed in three steps involving severalevolutionary processes to infer different kindof biological motifs and a concertedcooperation strategy to build the sequencealignment according to their motif conten

    Counting approximately-shortest paths in directed acyclic graphs

    Full text link
    Given a directed acyclic graph with positive edge-weights, two vertices s and t, and a threshold-weight L, we present a fully-polynomial time approximation-scheme for the problem of counting the s-t paths of length at most L. We extend the algorithm for the case of two (or more) instances of the same problem. That is, given two graphs that have the same vertices and edges and differ only in edge-weights, and given two threshold-weights L_1 and L_2, we show how to approximately count the s-t paths that have length at most L_1 in the first graph and length at most L_2 in the second graph. We believe that our algorithms should find application in counting approximate solutions of related optimization problems, where finding an (optimum) solution can be reduced to the computation of a shortest path in a purpose-built auxiliary graph

    Crowdsourcing in proteomics: public resources lead to better experiments

    Get PDF
    With the growing interest in the field of proteomics, the amount of publicly available proteome resources has also increased dramatically. This means that there are many useful resources available for almost all aspects of a proteomics experiment. However, it remains vital to use the right resource, for the right purpose, at the right time. This review is therefore meant to aid the reader in obtaining an overview of the available resources and their application, thus providing the necessary background to choose the appropriate resources for the experiment at hand. Many of the resources are also taking advantage of so-called crowdsourcing to maximize the potential of the resource. What this means and how this can improve future experiments will also be discussed. The text roughly follows the steps involved in a proteomics experiment, starting with the planning of the experiment, via the processing of the data and the analysis of the results, to the community-wide sharing of the produced data.acceptedVersio

    Developing a bioinformatics framework for proteogenomics

    Get PDF
    In the last 15 years, since the human genome was first sequenced, genome sequencing and annotation have continued to improve. However, genome annotation has not kept up with the accelerating rate of genome sequencing and as a result there is now a large backlog of genomic data waiting to be interpreted both quickly and accurately. Through advances in proteomics a new field has emerged to help improve genome annotation, termed proteogenomics, which uses peptide mass spectrometry data, enabling the discovery of novel protein coding genes, as well as the refinement and validation of known and putative protein-coding genes. The annotation of genomes relies heavily on ab initio gene prediction programs and/or mapping of a range of RNA transcripts. Although this method provides insights into the gene content of genomes it is unable to distinguish protein-coding genes from putative non-coding RNA genes. This problem is further confounded by the fact that only 5% of the public protein sequence repository at UniProt/SwissProt has been curated and derived from actual protein evidence. This thesis contends that it is critically important to incorporate proteomics data into genome annotation pipelines to provide experimental protein-coding evidence. Although there have been major improvements in proteogenomics over the last decade there are still numerous challenges to overcome. These key challenges include the loss of sensitivity when using inflated search spaces of putative sequences, how best to interpret novel identifications and how best to control for false discoveries. This thesis addresses the existing gap between the use of genomic and proteomic sources for accurate genome annotation by applying a proteogenomics approach with a customised methodology. This new approach was applied within four case studies: a prokaryote bacterium; a monocotyledonous wheat plant; a dicotyledonous grape plant; and human. The key contributions of this thesis are: a new methodology for proteogenomics analysis; 145 suggested gene refinements in Bradyrhizobium diazoefficiens (nitrogen-fixing bacteria); 55 new gene predictions (57 protein isoforms) in Vitis vinifera (grape); 49 new gene predictions (52 protein isoforms) in Homo sapiens (human); and 67 new gene predictions (70 protein isoforms) in Triticum aestivum (bread wheat). Lastly, a number of possible improvements for the studies conducted in this thesis and proteogenomics as a whole have been identified and discussed
    corecore