29 research outputs found

    Sandpile groups of generalized de Bruijn and Kautz graphs and circulant matrices over finite fields

    Full text link
    A maximal minor MM of the Laplacian of an nn-vertex Eulerian digraph Γ\Gamma gives rise to a finite group Zn1/Zn1M\mathbb{Z}^{n-1}/\mathbb{Z}^{n-1}M known as the sandpile (or critical) group S(Γ)S(\Gamma) of Γ\Gamma. We determine S(Γ)S(\Gamma) of the generalized de Bruijn graphs Γ=DB(n,d)\Gamma=\mathrm{DB}(n,d) with vertices 0,,n10,\dots,n-1 and arcs (i,di+k)(i,di+k) for 0in10\leq i\leq n-1 and 0kd10\leq k\leq d-1, and closely related generalized Kautz graphs, extending and completing earlier results for the classical de Bruijn and Kautz graphs. Moreover, for a prime pp and an nn-cycle permutation matrix XGLn(p)X\in\mathrm{GL}_n(p) we show that S(DB(n,p))S(\mathrm{DB}(n,p)) is isomorphic to the quotient by X\langle X\rangle of the centralizer of XX in PGLn(p)\mathrm{PGL}_n(p). This offers an explanation for the coincidence of numerical data in sequences A027362 and A003473 of the OEIS, and allows one to speculate upon a possibility to construct normal bases in the finite field Fpn\mathbb{F}_{p^n} from spanning trees in DB(n,p)\mathrm{DB}(n,p).Comment: I+24 page

    Sandpile groups and spanning trees of directed line graphs

    Get PDF
    We generalize a theorem of Knuth relating the oriented spanning trees of a directed graph G and its directed line graph LG. The sandpile group is an abelian group associated to a directed graph, whose order is the number of oriented spanning trees rooted at a fixed vertex. In the case when G is regular of degree k, we show that the sandpile group of G is isomorphic to the quotient of the sandpile group of LG by its k-torsion subgroup. As a corollary we compute the sandpile groups of two families of graphs widely studied in computer science, the de Bruijn graphs and Kautz graphs.Comment: v2 has an expanded section on deletion/contraction for directed graphs, and a more detailed proof of Theorem 2.3. To appear in Journal of Combinatorial Theory A

    The degree-diameter problem for sparse graph classes

    Full text link
    The degree-diameter problem asks for the maximum number of vertices in a graph with maximum degree Δ\Delta and diameter kk. For fixed kk, the answer is Θ(Δk)\Theta(\Delta^k). We consider the degree-diameter problem for particular classes of sparse graphs, and establish the following results. For graphs of bounded average degree the answer is Θ(Δk1)\Theta(\Delta^{k-1}), and for graphs of bounded arboricity the answer is \Theta(\Delta^{\floor{k/2}}), in both cases for fixed kk. For graphs of given treewidth, we determine the the maximum number of vertices up to a constant factor. More precise bounds are given for graphs of given treewidth, graphs embeddable on a given surface, and apex-minor-free graphs

    Author index to volume

    Get PDF

    On a problem of walks

    Full text link

    Hoffman polynomials of nonnegative irreducible matrices and strongly connected digraphs

    Get PDF
    AbstractFor a nonnegative n×n matrix A, we find that there is a polynomial f(x)∈R[x] such that f(A) is a positive matrix of rank one if and only if A is irreducible. Furthermore, we show that the lowest degree such polynomial f(x) with tr f(A)=n is unique. Thus, generalizing the well-known definition of the Hoffman polynomial of a strongly connected regular digraph, for any irreducible nonnegative n×n matrix A, we are led to define its Hoffman polynomial to be the polynomial f(x) of minimum degree satisfying that f(A) is positive and has rank 1 and trace n. The Hoffman polynomial of a strongly connected digraph is defined to be the Hoffman polynomial of its adjacency matrix. We collect in this paper some basic results and open problems related to the concept of Hoffman polynomials
    corecore