22,161 research outputs found

    Soft-Label Dataset Distillation and Text Dataset Distillation

    Full text link
    Dataset distillation is a method for reducing dataset sizes by learning a small number of synthetic samples containing all the information of a large dataset. This has several benefits like speeding up model training, reducing energy consumption, and reducing required storage space. Currently, each synthetic sample is assigned a single `hard' label, and also, dataset distillation can currently only be used with image data. We propose to simultaneously distill both images and their labels, thus assigning each synthetic sample a `soft' label (a distribution of labels). Our algorithm increases accuracy by 2-4% over the original algorithm for several image classification tasks. Using `soft' labels also enables distilled datasets to consist of fewer samples than there are classes as each sample can encode information for multiple classes. For example, training a LeNet model with 10 distilled images (one per class) results in over 96% accuracy on MNIST, and almost 92% accuracy when trained on just 5 distilled images. We also extend the dataset distillation algorithm to distill sequential datasets including texts. We demonstrate that text distillation outperforms other methods across multiple datasets. For example, models attain almost their original accuracy on the IMDB sentiment analysis task using just 20 distilled sentences. Our code can be found at \href\href{https://github.com/ilia10000/dataset-distillation}{\text{https://github.com/ilia10000/dataset-distillation}}

    Dataset Distillation for Medical Dataset Sharing

    Full text link
    Sharing medical datasets between hospitals is challenging because of the privacy-protection problem and the massive cost of transmitting and storing many high-resolution medical images. However, dataset distillation can synthesize a small dataset such that models trained on it achieve comparable performance with the original large dataset, which shows potential for solving the existing medical sharing problems. Hence, this paper proposes a novel dataset distillation-based method for medical dataset sharing. Experimental results on a COVID-19 chest X-ray image dataset show that our method can achieve high detection performance even using scarce anonymized chest X-ray images

    Dataset Distillation using Parameter Pruning

    Full text link
    The acquisition of advanced models relies on large datasets in many fields, which makes storing datasets and training models expensive. As a solution, dataset distillation can synthesize a small dataset that preserves most information of the original large dataset. The recently proposed dataset distillation method by matching network parameters has been proven effective for several datasets. However, the dimension of network parameters is usually large. And we found that a few parameters in the distillation process are difficult to match, which harms the distillation performance. Based on this observation, this paper proposes a new method to solve the problem using parameter pruning. The proposed method can synthesize more robust distilled datasets and improve the distillation performance by pruning difficult-to-match parameters in the distillation process. Experimental results on three datasets show that the proposed method outperformed other state-of-the-art dataset distillation methods

    Towards Trustworthy Dataset Distillation

    Full text link
    Efficiency and trustworthiness are two eternal pursuits when applying deep learning in real-world applications. With regard to efficiency, dataset distillation (DD) endeavors to reduce training costs by distilling the large dataset into a tiny synthetic dataset. However, existing methods merely concentrate on in-distribution (InD) classification in a closed-world setting, disregarding out-of-distribution (OOD) samples. On the other hand, OOD detection aims to enhance models' trustworthiness, which is always inefficiently achieved in full-data settings. For the first time, we simultaneously consider both issues and propose a novel paradigm called Trustworthy Dataset Distillation (TrustDD). By distilling both InD samples and outliers, the condensed datasets are capable to train models competent in both InD classification and OOD detection. To alleviate the requirement of real outlier data and make OOD detection more practical, we further propose to corrupt InD samples to generate pseudo-outliers and introduce Pseudo-Outlier Exposure (POE). Comprehensive experiments on various settings demonstrate the effectiveness of TrustDD, and the proposed POE surpasses state-of-the-art method Outlier Exposure (OE). Compared with the preceding DD, TrustDD is more trustworthy and applicable to real open-world scenarios. Our code will be publicly available.Comment: 20 pages, 20 figure

    Embarassingly Simple Dataset Distillation

    Full text link
    Dataset distillation extracts a small set of synthetic training samples from a large dataset with the goal of achieving competitive performance on test data when trained on this sample. In this work, we tackle dataset distillation at its core by treating it directly as a bilevel optimization problem. Re-examining the foundational back-propagation through time method, we study the pronounced variance in the gradients, computational burden, and long-term dependencies. We introduce an improved method: Random Truncated Backpropagation Through Time (RaT-BPTT) to address them. RaT-BPTT incorporates a truncation coupled with a random window, effectively stabilizing the gradients and speeding up the optimization while covering long dependencies. This allows us to establish new state-of-the-art for a variety of standard dataset benchmarks. A deeper dive into the nature of distilled data unveils pronounced intercorrelation. In particular, subsets of distilled datasets tend to exhibit much worse performance than directly distilled smaller datasets of the same size. Leveraging RaT-BPTT, we devise a boosting mechanism that generates distilled datasets that contain subsets with near optimal performance across different data budgets.Comment: Short version appears at NeurIPS 2023 WANT worksho

    Multimodal Dataset Distillation for Image-Text Retrieval

    Full text link
    Dataset distillation methods offer the promise of reducing a large-scale dataset down to a significantly smaller set of (potentially synthetic) training examples, which preserve sufficient information for training a new model from scratch. So far dataset distillation methods have been developed for image classification. However, with the rise in capabilities of vision-language models, and especially given the scale of datasets necessary to train these models, the time is ripe to expand dataset distillation methods beyond image classification. In this work, we take the first steps towards this goal by expanding on the idea of trajectory matching to create a distillation method for vision-language datasets. The key challenge is that vision-language datasets do not have a set of discrete classes. To overcome this, our proposed multimodal dataset distillation method jointly distill the images and their corresponding language descriptions in a contrastive formulation. Since there are no existing baselines, we compare our approach to three coreset selection methods (strategic subsampling of the training dataset), which we adapt to the vision-language setting. We demonstrate significant improvements on the challenging Flickr30K and COCO retrieval benchmark: the best coreset selection method which selects 1000 image-text pairs for training is able to achieve only 5.6% image-to-text retrieval accuracy (recall@1); in contrast, our dataset distillation approach almost doubles that with just 100 (an order of magnitude fewer) training pairs.Comment: 28 pages, 11 figure
    • …
    corecore