1,065 research outputs found

    Reliability models for dataflow computer systems

    Get PDF
    The demands for concurrent operation within a computer system and the representation of parallelism in programming languages have yielded a new form of program representation known as data flow (DENN 74, DENN 75, TREL 82a). A new model based on data flow principles for parallel computations and parallel computer systems is presented. Necessary conditions for liveness and deadlock freeness in data flow graphs are derived. The data flow graph is used as a model to represent asynchronous concurrent computer architectures including data flow computers

    Algorithmic Verification of Asynchronous Programs

    Full text link
    Asynchronous programming is a ubiquitous systems programming idiom to manage concurrent interactions with the environment. In this style, instead of waiting for time-consuming operations to complete, the programmer makes a non-blocking call to the operation and posts a callback task to a task buffer that is executed later when the time-consuming operation completes. A co-operative scheduler mediates the interaction by picking and executing callback tasks from the task buffer to completion (and these callbacks can post further callbacks to be executed later). Writing correct asynchronous programs is hard because the use of callbacks, while efficient, obscures program control flow. We provide a formal model underlying asynchronous programs and study verification problems for this model. We show that the safety verification problem for finite-data asynchronous programs is expspace-complete. We show that liveness verification for finite-data asynchronous programs is decidable and polynomial-time equivalent to Petri Net reachability. Decidability is not obvious, since even if the data is finite-state, asynchronous programs constitute infinite-state transition systems: both the program stack and the task buffer of pending asynchronous calls can be potentially unbounded. Our main technical construction is a polynomial-time semantics-preserving reduction from asynchronous programs to Petri Nets and conversely. The reduction allows the use of algorithmic techniques on Petri Nets to the verification of asynchronous programs. We also study several extensions to the basic models of asynchronous programs that are inspired by additional capabilities provided by implementations of asynchronous libraries, and classify the decidability and undecidability of verification questions on these extensions.Comment: 46 pages, 9 figure

    Static Analysis of Deterministic Negotiations

    Full text link
    Negotiation diagrams are a model of concurrent computation akin to workflow Petri nets. Deterministic negotiation diagrams, equivalent to the much studied and used free-choice workflow Petri nets, are surprisingly amenable to verification. Soundness (a property close to deadlock-freedom) can be decided in PTIME. Further, other fundamental questions like computing summaries or the expected cost, can also be solved in PTIME for sound deterministic negotiation diagrams, while they are PSPACE-complete in the general case. In this paper we generalize and explain these results. We extend the classical "meet-over-all-paths" (MOP) formulation of static analysis problems to our concurrent setting, and introduce Mazurkiewicz-invariant analysis problems, which encompass the questions above and new ones. We show that any Mazurkiewicz-invariant analysis problem can be solved in PTIME for sound deterministic negotiations whenever it is in PTIME for sequential flow-graphs---even though the flow-graph of a deterministic negotiation diagram can be exponentially larger than the diagram itself. This gives a common explanation to the low-complexity of all the analysis questions studied so far. Finally, we show that classical gen/kill analyses are also an instance of our framework, and obtain a PTIME algorithm for detecting anti-patterns in free-choice workflow Petri nets. Our result is based on a novel decomposition theorem, of independent interest, showing that sound deterministic negotiation diagrams can be hierarchically decomposed into (possibly overlapping) smaller sound diagrams.Comment: To appear in the Proceedings of LICS 2017, IEEE Computer Societ

    Relating BIP and Reo

    Get PDF
    Coordination languages simplify design and development of concurrent systems. Particularly, exogenous coordination languages, like BIP and Reo, enable system designers to express the interactions among components in a system explicitly. In this paper we establish a formal relation between BI(P) (i.e., BIP without the priority layer) and Reo, by defining transformations between their semantic models. We show that these transformations preserve all properties expressible in a common semantics. This formal relation comprises the basis for a solid comparison and consolidation of the fundamental coordination concepts behind these two languages. Moreover, this basis offers translations that enable users of either language to benefit from the toolchains of the other.Comment: In Proceedings ICE 2015, arXiv:1508.0459

    The DS-Pnet modeling formalism for cyber-physical system development

    Get PDF
    This work presents the DS-Pnet modeling formalism (Dataflow, Signals and Petri nets), designed for the development of cyber-physical systems, combining the characteristics of Petri nets and dataflows to support the modeling of mixed systems containing both reactive parts and data processing operations. Inheriting the features of the parent IOPT Petri net class, including an external interface composed of input and output signals and events, the addition of dataflow operations brings enhanced modeling capabilities to specify mathematical data transformations and graphically express the dependencies between signals. Data-centric systems, that do not require reactive controllers, are designed using pure dataflow models. Component based model composition enables reusing existing components, create libraries of previously tested components and hierarchically decompose complex systems into smaller sub-systems. A precise execution semantics was defined, considering the relationship between dataflow and Petri net nodes, providing an abstraction to define the interface between reactive controllers and input and output signals, including analog sensors and actuators. The new formalism is supported by the IOPT-Flow Web based tool framework, offering tools to design and edit models, simulate model execution on the Web browser, plus model-checking and software/hardware automatic code generation tools to implement controllers running on embedded devices (C,VHDL and JavaScript). A new communication protocol was created to permit the automatic implementation of distributed cyber-physical systems composed of networks of remote components communicating over the Internet. The editor tool connects directly to remote embedded devices running DS-Pnet models and may import remote components into new models, contributing to simplify the creation of distributed cyber-physical applications, where the communication between distributed components is specified just by drawing arcs. Several application examples were designed to validate the proposed formalism and the associated framework, ranging from hardware solutions, industrial applications to distributed software applications

    Reo + mCRL2: A Framework for Model-Checking Dataflow in Service Compositions

    Get PDF
    The paradigm of service-oriented computing revolutionized the field of software engineering. According to this paradigm, new systems are composed of existing stand-alone services to support complex cross-organizational business processes. Correct communication of these services is not possible without a proper coordination mechanism. The Reo coordination language is a channel-based modeling language that introduces various types of channels and their composition rules. By composing Reo channels, one can specify Reo connectors that realize arbitrary complex behavioral protocols. Several formalisms have been introduced to give semantics to Reo. In their most basic form, they reflect service synchronization and dataflow constraints imposed by connectors. To ensure that the composed system behaves as intended, we need a wide range of automated verification tools to assist service composition designers. In this paper, we present our framework for the verification of Reo using the mCRL2 toolset. We unify our previous work on mapping various semantic models for Reo, namely, constraint automata, timed constraint automata, coloring semantics and the newly developed action constraint automata, to the process algebraic specification language of mCRL2, address the correctness of this mapping, discuss tool support, and present a detailed example that illustrates the use of Reo empowered with mCRL2 for the analysis of dataflow in service-based process models

    Reo + mCRL2: A Framework for Model-checking Dataflow in Service Compositions

    Get PDF
    The paradigm of service-oriented computing revolutionized the field of software engineering. According to this paradigm, new systems are composed of existing stand-alone services to support complex cross-organizational business processes. Correct communication of these services is not possible without a proper coordination mechanism. The Reo coordination language is a channel-based modeling language that introduces various types of channels and their composition rules. By composing Reo channels, one can specify Reo connectors that realize arbitrary complex behavioral protocols. Several formalisms have been introduced to give semantics to Reo. In their most basic form, they reflect service synchronization and dataflow constraints imposed by connectors. To ensure that the composed system behaves as intended, we need a wide range of automated verification tools to assist service composition designers. In this paper, we present our framework for the verification of Reo using the toolset. We unify our previous work on mapping various semantic models for Reo, namely, constraint automata, timed constraint automata, coloring semantics and the newly developed action constraint automata, to the process algebraic specification language of , address the correctness of this mapping, discuss tool support, and present a detailed example that illustrates the use of Reo empowered with for the analysis of dataflow in service-based process models
    • …
    corecore