139,675 research outputs found

    A pragmatic approach for measuring data quality in primary care databases

    Get PDF
    There is currently no widely recognised methodology for undertaking data quality assessment in electronic health records used for research. In an attempt to address this, we have developed a protocol for measuring and monitoring data quality in primary care research databases, whereby practice-based data quality measures are tailored to the intended use of the data. Our approach was informed by an in-depth investigation of aspects of data quality in the Clinical Practice Research Datalink Gold database and presentations of the results to data users. Although based on a primary care database, much of our proposed approach would be equally applicable to other health care databases

    Evaluation of local orientation for texture classification

    Get PDF
    The aim of this paper is to present a study where we evaluate the optimal inclusion of the texture orientation in the classification process. In this paper the orientation for each pixel in the image is extracted using the partial derivatives of the Gaussian function and the main focus of our work is centred on the evaluation of the local dominant orientation (which is calculated by combining the magnitude and local orientation) on the classification results. While the dominant orientation of the texture depends strongly on the observation scale, in this paper we propose to evaluate the macro-texture by calculating the distribution of the dominant orientations for all pixels in the image that sample the texture at micro-level. The experimental results were conducted on standard texture databases and the results indicate that the dominant orientation calculated at micro-level is an appropriate measure for texture description

    Mining protein database using machine learning techniques

    No full text
    With a large amount of information relating to proteins accumulating in databases widely available online, it is of interest to apply machine learning techniques that, by extracting underlying statistical regularities in the data, make predictions about the functional and evolutionary characteristics of unseen proteins. Such predictions can help in achieving a reduction in the space over which experiment designers need to search in order to improve our understanding of the biochemical properties. Previously it has been suggested that an integration of features computable by comparing a pair of proteins can be achieved by an artificial neural network, hence predicting the degree to which they may be evolutionary related and homologous. We compiled two datasets of pairs of proteins, each pair being characterised by seven distinct features. We performed an exhaustive search through all possible combinations of features, for the problem of separating remote homologous from analogous pairs, we note that significant performance gain was obtained by the inclusion of sequence and structure information. We find that the use of a linear classifier was enough to discriminate a protein pair at the family level. However, at the superfamily level, to detect remote homologous pairs was a relatively harder problem. We find that the use of nonlinear classifiers achieve significantly higher accuracies. In this paper, we compare three different pattern classification methods on two problems formulated as detecting evolutionary and functional relationships between pairs of proteins, and from extensive cross validation and feature selection based studies quantify the average limits and uncertainties with which such predictions may be made. Feature selection points to a "knowledge gap" in currently available functional annotations. We demonstrate how the scheme may be employed in a framework to associate an individual protein with an existing family of evolutionarily related proteins

    Using Ontologies for the Design of Data Warehouses

    Get PDF
    Obtaining an implementation of a data warehouse is a complex task that forces designers to acquire wide knowledge of the domain, thus requiring a high level of expertise and becoming it a prone-to-fail task. Based on our experience, we have detected a set of situations we have faced up with in real-world projects in which we believe that the use of ontologies will improve several aspects of the design of data warehouses. The aim of this article is to describe several shortcomings of current data warehouse design approaches and discuss the benefit of using ontologies to overcome them. This work is a starting point for discussing the convenience of using ontologies in data warehouse design.Comment: 15 pages, 2 figure
    corecore