647 research outputs found

    Database-Based Estimation of Liver Deformation under Pneumoperitoneum for Surgical Image-Guidance and Simulation

    Get PDF
    The insufflation of the abdomen in laparoscopic liver surgery leads to significant deformation of the liver. The estimation of the shape and position of the liver after insufflation has many important applications, such as providing surface-based registration algorithms used in image guidance with an initial guess and realistic patient-specific surgical simulation. Our proposed algorithm computes a deformation estimate for a patient subject from a database of known insufflation deformations, as a weighted average. The database is built from pre-operative and intra-operative 3D image segmentations. The estimation pipeline also comprises a biomechanical simulation to incorporate patient-specific boundary conditions (BCs) and eliminate any non-physical deformation arising from the computation of the deformation as a weighted average. We have evaluated the accuracy of our intra-subject registration, used for the computation of the displacements stored in the database, and our liver deformation predictions based on segmented, in-vivo porcine CT image data from 5 animals and manually selected vascular landmarks. We found root mean squared (RMS) target registration errors (TREs) of 2.96-11.31mm after intra-subject registration. For our estimated deformation, we found an RMS TRE of 5.82-11.47mm for four of the subjects, on one outlier subject the method failed

    Preoperative liver registration for augmented monocular laparoscopy using backward–forward biomechanical simulation

    Get PDF
    PURPOSE: Augmented reality for monocular laparoscopy from a preoperative volume such as CT is achieved in two steps. The first step is to segment the organ in the preoperative volume and reconstruct its 3D model. The second step is to register the preoperative 3D model to an initial intraoperative laparoscopy image. To date, there does not exist an automatic initial registration method to solve the second step for the liver in the de facto operating room conditions of monocular laparoscopy. Existing methods attempt to solve for both deformation and pose simultaneously, leading to nonconvex problems with no optimal solution algorithms. METHODS: We propose in contrast to break the problem down into two parts, solving for (i) deformation and (ii) pose. Part (i) simulates biomechanical deformations from the preoperative to the intraoperative state to predict the liver’s unknown intraoperative shape by modeling gravity, the abdominopelvic cavity’s pressure and boundary conditions. Part (ii) rigidly registers the simulated shape to the laparoscopy image using contour cues. RESULTS: Our formulation leads to a well-posed problem, contrary to existing methods. This is because it exploits strong environment priors to complement the weak laparoscopic visual cues. CONCLUSION: Quantitative results with in silico and phantom experiments and qualitative results with laparosurgery images for two patients show that our method outperforms the state-of-the-art in accuracy and registration time

    Patient-specific simulation environment for surgical planning and preoperative rehearsal

    Get PDF
    Surgical simulation is common practice in the fields of surgical education and training. Numerous surgical simulators are available from commercial and academic organisations for the generic modelling of surgical tasks. However, a simulation platform is still yet to be found that fulfils the key requirements expected for patient-specific surgical simulation of soft tissue, with an effective translation into clinical practice. Patient-specific modelling is possible, but to date has been time-consuming, and consequently costly, because data preparation can be technically demanding. This motivated the research developed herein, which addresses the main challenges of biomechanical modelling for patient-specific surgical simulation. A novel implementation of soft tissue deformation and estimation of the patient-specific intraoperative environment is achieved using a position-based dynamics approach. This modelling approach overcomes the limitations derived from traditional physically-based approaches, by providing a simulation for patient-specific models with visual and physical accuracy, stability and real-time interaction. As a geometrically- based method, a calibration of the simulation parameters is performed and the simulation framework is successfully validated through experimental studies. The capabilities of the simulation platform are demonstrated by the integration of different surgical planning applications that are found relevant in the context of kidney cancer surgery. The simulation of pneumoperitoneum facilitates trocar placement planning and intraoperative surgical navigation. The implementation of deformable ultrasound simulation can assist surgeons in improving their scanning technique and definition of an optimal procedural strategy. Furthermore, the simulation framework has the potential to support the development and assessment of hypotheses that cannot be tested in vivo. Specifically, the evaluation of feedback modalities, as a response to user-model interaction, demonstrates improved performance and justifies the need to integrate a feedback framework in the robot-assisted surgical setting.Open Acces

    Using Contours as Boundary Conditions for Elastic Registration during Minimally Invasive Hepatic Surgery

    Get PDF
    International audienceWe address in this paper the ill-posed problem of initial alignment of pre-operative to intra-operative data for augmented reality during minimally invasive hepatic surgery. This problem consists of finding the rigid transformation that relates the scanning reference and the endoscopic camera pose, and the non-rigid transformation undergone by the liver w.r.t its scanned state. Most of the state-of-the-art methods assume a known initial registration. Here, we propose a method that permits to recover the deformation undergone by the liver while simultaneously finding the rotational and translational parts of the transformation. Our formulation considers the boundaries of the liver with its surrounding tissues as hard constraints directly encoded in an energy minimization process. We performed experiments on real in-vivo data of human hepatic surgery and synthetic data, and compared our method with related works

    Automatic registration of 3D models to laparoscopic video images for guidance during liver surgery

    Get PDF
    Laparoscopic liver interventions offer significant advantages over open surgery, such as less pain and trauma, and shorter recovery time for the patient. However, they also bring challenges for the surgeons such as the lack of tactile feedback, limited field of view and occluded anatomy. Augmented reality (AR) can potentially help during laparoscopic liver interventions by displaying sub-surface structures (such as tumours or vasculature). The initial registration between the 3D model extracted from the CT scan and the laparoscopic video feed is essential for an AR system which should be efficient, robust, intuitive to use and with minimal disruption to the surgical procedure. Several challenges of registration methods in laparoscopic interventions include the deformation of the liver due to gas insufflation in the abdomen, partial visibility of the organ and lack of prominent geometrical or texture-wise landmarks. These challenges are discussed in detail and an overview of the state of the art is provided. This research project aims to provide the tools to move towards a completely automatic registration. Firstly, the importance of pre-operative planning is discussed along with the characteristics of the liver that can be used in order to constrain a registration method. Secondly, maximising the amount of information obtained before the surgery, a semi-automatic surface based method is proposed to recover the initial rigid registration irrespective of the position of the shapes. Finally, a fully automatic 3D-2D rigid global registration is proposed which estimates a global alignment of the pre-operative 3D model using a single intra-operative image. Moving towards incorporating the different liver contours can help constrain the registration, especially for partial surfaces. Having a robust, efficient AR system which requires no manual interaction from the surgeon will aid in the translation of such approaches to the clinics

    Technologies for Biomechanically-Informed Image Guidance of Laparoscopic Liver Surgery

    Get PDF
    Laparoscopic surgery for liver resection has a number medical advantages over open surgery, but also comes with inherent technical challenges. The surgeon only has a very limited field of view through the imaging modalities routinely employed intra-operatively, laparoscopic video and ultrasound, and the pneumoperitoneum required to create the operating space and gaining access to the organ can significantly deform and displace the liver from its pre-operative configuration. This can make relating what is visible intra-operatively to the pre-operative plan and inferring the location of sub-surface anatomy a very challenging task. Image guidance systems can help overcome these challenges by updating the pre-operative plan to the situation in theatre and visualising it in relation to the position of surgical instruments. In this thesis, I present a series of contributions to a biomechanically-informed image-guidance system made during my PhD. The most recent one is work on a pipeline for the estimation of the post-insufflation configuration of the liver by means of an algorithm that uses a database of segmented training images of patient abdomens where the post-insufflation configuration of the liver is known. The pipeline comprises an algorithm for inter and intra-subject registration of liver meshes by means of non-rigid spectral point-correspondence finding. My other contributions are more fundamental and less application specific, and are all contained and made available to the public in the NiftySim open-source finite element modelling package. Two of my contributions to NiftySim are of particular interest with regards to image guidance of laparoscopic liver surgery: 1) a novel general purpose contact modelling algorithm that can be used to simulate contact interactions between, e.g., the liver and surrounding anatomy; 2) membrane and shell elements that can be used to, e.g., simulate the Glisson capsule that has been shown to significantly influence the organ’s measured stiffness

    Silhouette-based Pose Estimation for Deformable Organs Application to Surgical Augmented Reality

    Get PDF
    International audience— In this paper we introduce a method for semi-automatic registration of 3D deformable models using 2D shape outlines (silhouettes) extracted from a monocular camera view. Our framework is based on the combination of a biomechanical model of the organ with a set of projective constraints influencing the deformation of the model. To enforce convergence towards a global minimum for this ill-posed problem we interactively provide a rough (rigid) estimation of the pose. We show that our approach allows for the estimation of the non-rigid 3D pose while relying only on 2D information. The method is evaluated experimentally on a soft silicone gel model of a liver, as well as on real surgical data, providing augmented reality of the liver and the kidney using a monocular laparoscopic camera. Results show that the final elastic registration can be obtained in just a few seconds, thus remaining compatible with clinical constraints. We also evaluate the sensitivity of our approach according to both the initial alignment of the model and the silhouette length and shape

    Registration of ultrasound and computed tomography for guidance of laparoscopic liver surgery

    Get PDF
    Laparoscopic Ultrasound (LUS) imaging is a standard tool used for image-guidance during laparoscopic liver resection, as it provides real-time information on the internal structure of the liver. However, LUS probes are di cult to handle and their resulting images hard to interpret. Additionally, some anatomical targets such as tumours are not always visible, making the LUS guidance less e ective. To solve this problem, registration between the LUS images and a pre-operative Computed Tomography (CT) scan using information from blood vessels has been previously proposed. By merging these two modalities, the relative position between the LUS images and the anatomy of CT is obtained and both can be used to guide the surgeon. The problem of LUS to CT registration is specially challenging, as besides being a multi-modal registration, the eld of view of LUS is signi cantly smaller than that of CT. Therefore, this problem becomes poorly constrained and typically an accurate initialisation is needed. Also, the liver is highly deformed during laparoscopy, complicating the problem further. So far, the methods presented in the literature are not clinically feasible as they depend on manually set correspondences between both images. In this thesis, a solution for this registration problem that may be more transferable to the clinic is proposed. Firstly, traditional registration approaches comprised of manual initialisation and optimisation of a cost function are studied. Secondly, it is demonstrated that a globally optimal registration without a manual initialisation is possible. Finally, a new globally optimal solution that does not require commonly used tracking technologies is proposed and validated. The resulting approach provides clinical value as it does not require manual interaction in the operating room or tracking devices. Furthermore, the proposed method could potentially be applied to other image-guidance problems that require registration between ultrasound and a pre-operative scan

    Computación paralela heterogénea en registro de imágenes y aplicaciones de álgebra lineal

    Get PDF
    This doctoral thesis focuses on GPU acceleration of medical image registration and sparse general matrix-matrix multiplication (SpGEMM). The comprehensive work presented here aims to enable new possibilities in Image Guided Surgery (IGS). IGS provides the surgeon with advanced navigation tools during surgery. Image registration, which is a part of IGS, is computationally demanding, therefore GPU acceleration is greatly desirable. spGEMM, which is an essential part in many scientific and data analytics applications, e.g., graph applications, is also a useful tool in biomechanical modeling and sparse vessel network registration. We present this work in two parts. The first part of this thesis describes the optimization of the most demanding part of non-rigid Free Form Deformation registration, i.e., B-spline interpolation. Our novel optimization technique minimizes the data movement between processing cores and memory and maximizes the utilization of the very fast register file. In addition, our approach re-formulates B-spline interpolation to fully utilize Fused Multiply Accumulation instructions for additional benefits in performance and accuracy. Our optimized B-spline interpolation provides significant speedup to image registration. The second part describes the optimization of spGEMM. Hardware manufacturers, with the aim of increasing the performance of deep-learning, created specialized dense matrix multiplication units, called Tensor Core Units (TCUs). However, until now, no work takes advantage of TCUs for sparse matrix multiplication. With this work we provide the first TCU implementation of spGEMM and prove its benefits over conventional GPU spGEMM.Esta tesis doctoral se centra en la aceleración por GPU del registro de imágenes médicas y la multiplicación de matrices dispersas (SpGEMM). El exhaustivo trabajo presentado aquí tiene como objetivo permitir nuevas posibilidades en la cirugía guiada por imagen (IGS). IGS proporciona al cirujano herramientas de navegación avanzadas durante la cirugía. El registro de imágenes, parte de IGS computacionalmente exigente, por lo tanto, la aceleración en GPU es muy deseable. spGEMM, la cual es una parte esencial en muchas aplicaciones científicas y de análisis de datos, por ejemplo, aplicaciones de gráficos, también es una herramienta útil en el modelado biomecánico y el registro de redes de vasos dispersos. Presentamos este trabajo en dos partes. La primera parte de esta tesis describe la optimización de la parte más exigente del registro de deformación de forma libre no rígida, es decir, la interpolación B-spline. Nuestra novedosa técnica de optimización minimiza el movimiento de datos entre los núcleos de procesamiento y la memoria y maximiza la utilización del archivo de registro rápido. Además, nuestro enfoque reformula la interpolación B-spline para utilizar completamente las instrucciones de multiplicación-acumulación fusionada (FMAC) para obtener beneficios adicionales en rendimiento y precisión. Nuestra interpolación B-spline optimizada proporciona una aceleración significativa en el registro de imágenes. La segunda parte describe la optimización de spGEMM. Los fabricantes de hardware, con el objetivo de aumentar el rendimiento del aprendizaje profundo, crearon unidades especializadas de multiplicación de matrices densas, llamadas Tensor Core Units (TCU). Sin embargo, hasta ahora, no se ha encontrado ningún trabajo aprovecha las TCU para la multiplicación de matrices dispersas. Con este trabajo, proporcionamos la primera implementación TCU de spGEMM y demostramos sus beneficios sobre la spGEMM convencional operada sobre dispositivos GPU
    • …
    corecore