41,902 research outputs found

    5SRNAdb: an information resource for 5S ribosomal RNAs

    Get PDF
    Ribosomal 5S RNA (5S rRNA) is the ubiquitous RNA component found in the large subunit of ribosomes in all known organisms. Due to its small size, abundance and evolutionary conservation 5S rRNA for many years now is used as a model molecule in studies on RNA structure, RNA–protein interactions and molecular phylogeny. 5SRNAdb (http://combio.pl/5srnadb/) is the first database that provides a high quality reference set of ribosomal 5S RNAs (5S rRNA) across three domains of life. Here, we give an overview of new developments in the database and associated web tools since 2002, including updates to database content, curation processes and user web interfaces

    A creature with a hundred waggly tails: intrinsically disordered proteins in the ribosome

    Get PDF
    This article is made available for unrestricted research re-use and secondary analysis in any form or by any means with acknowledgement of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic.Intrinsic disorder (i.e., lack of a unique 3-D structure) is a common phenomenon, and many biologically active proteins are disordered as a whole, or contain long disordered regions. These intrinsically disordered proteins/regions constitute a significant part of all proteomes, and their functional repertoire is complementary to functions of ordered proteins. In fact, intrinsic disorder represents an important driving force for many specific functions. An illustrative example of such disorder-centric functional class is RNA-binding proteins. In this study, we present the results of comprehensive bioinformatics analyses of the abundance and roles of intrinsic disorder in 3,411 ribosomal proteins from 32 species. We show that many ribosomal proteins are intrinsically disordered or hybrid proteins that contain ordered and disordered domains. Predicted globular domains of many ribosomal proteins contain noticeable regions of intrinsic disorder. We also show that disorder in ribosomal proteins has different characteristics compared to other proteins that interact with RNA and DNA including overall abundance, evolutionary conservation, and involvement in protein–protein interactions. Furthermore, intrinsic disorder is not only abundant in the ribosomal proteins, but we demonstrate that it is absolutely necessary for their various functions

    Representation, searching and discovery of patterns of bases in complex RNA structures

    Get PDF
    We describe a graph theoretic method designed to perform efficient searches for substructural patterns in nucleic acid structural coordinate databases using a simplified vectorial representation. Two vectors represent each nucleic acid base and the relative positions of bases with respect to one another are described in terms of distances between the defined start and end points of the vectors on each base. These points comprise the nodes and the distances the edges of a graph, and a pattern search can then be performed using a subgraph isomorphism algorithm. The minimal representation was designed to facilitate searches for complex patterns but was first tested on simple, well-characterised arrangements of bases such as base pairs and GNRA-tetraloop receptor interactions. The method performed very well for these interaction types. A survey of side-by-side base interactions, of which the adenosine platform is the best known example, also locates examples of similar base rearrangements that we consider to be important in structural regulation. A number of examples were found, with GU platforms being particularly prevalent. A GC platform in the RNA of the Thermus thermophilus small ribosomal subunit is in an analogous position to an adenosine platform in other species. An unusual GG platform is also observed close to one of the substrate binding sites in Haloarcula marismortui large ribosomal subunit RNA

    Size, shape, and flexibility of RNA structures

    Full text link
    Determination of sizes and flexibilities of RNA molecules is important in understanding the nature of packing in folded structures and in elucidating interactions between RNA and DNA or proteins. Using the coordinates of the structures of RNA in the Protein Data Bank we find that the size of the folded RNA structures, measured using the radius of gyration, RGR_G, follows the Flory scaling law, namely, RG=5.5N1/3R_G =5.5 N^{1/3} \AA where N is the number of nucleotides. The shape of RNA molecules is characterized by the asphericity Δ\Delta and the shape SS parameters that are computed using the eigenvalues of the moment of inertia tensor. From the distribution of Δ\Delta, we find that a large fraction of folded RNA structures are aspherical and the distribution of SS values shows that RNA molecules are prolate (S>0S>0). The flexibility of folded structures is characterized by the persistence length lpl_p. By fitting the distance distribution function P(r)P(r) to the worm-like chain model we extracted the persistence length lpl_p. We find that lp≈1.5N0.33l_p\approx 1.5 N^{0.33} \AA. The dependence of lpl_p on NN implies the average length of helices should increases as the size of RNA grows. We also analyze packing in the structures of ribosomes (30S, 50S, and 70S) in terms of RGR_G, Δ\Delta, SS, and lpl_p. The 70S and the 50S subunits are more spherical compared to most RNA molecules. The globularity in 50S is due to the presence of an unusually large number (compared to 30S subunit) of small helices that are stitched together by bulges and loops. Comparison of the shapes of the intact 70S ribosome and the constituent particles suggests that folding of the individual molecules might occur prior to assembly.Comment: 28 pages, 8 figures, J. Chem. Phys. in pres

    Systematic identification of gene families for use as markers for phylogenetic and phylogeny- driven ecological studies of bacteria and archaea and their major subgroups

    Full text link
    With the astonishing rate that the genomic and metagenomic sequence data sets are accumulating, there are many reasons to constrain the data analyses. One approach to such constrained analyses is to focus on select subsets of gene families that are particularly well suited for the tasks at hand. Such gene families have generally been referred to as marker genes. We are particularly interested in identifying and using such marker genes for phylogenetic and phylogeny-driven ecological studies of microbes and their communities. We therefore refer to these as PhyEco (for phylogenetic and phylogenetic ecology) markers. The dual use of these PhyEco markers means that we needed to develop and apply a set of somewhat novel criteria for identification of the best candidates for such markers. The criteria we focused on included universality across the taxa of interest, ability to be used to produce robust phylogenetic trees that reflect as much as possible the evolution of the species from which the genes come, and low variation in copy number across taxa. We describe here an automated protocol for identifying potential PhyEco markers from a set of complete genome sequences. The protocol combines rapid searching, clustering and phylogenetic tree building algorithms to generate protein families that meet the criteria listed above. We report here the identification of PhyEco markers for different taxonomic levels including 40 for all bacteria and archaea, 114 for all bacteria, and much more for some of the individual phyla of bacteria. This new list of PhyEco markers should allow much more detailed automated phylogenetic and phylogenetic ecology analyses of these groups than possible previously.Comment: 24 pages, 3 figure

    Two RNA-binding motifs in eIF3 direct HCV IRES-dependent translation.

    Get PDF
    The initiation of protein synthesis plays an essential regulatory role in human biology. At the center of the initiation pathway, the 13-subunit eukaryotic translation initiation factor 3 (eIF3) controls access of other initiation factors and mRNA to the ribosome by unknown mechanisms. Using electron microscopy (EM), bioinformatics and biochemical experiments, we identify two highly conserved RNA-binding motifs in eIF3 that direct translation initiation from the hepatitis C virus internal ribosome entry site (HCV IRES) RNA. Mutations in the RNA-binding motif of subunit eIF3a weaken eIF3 binding to the HCV IRES and the 40S ribosomal subunit, thereby suppressing eIF2-dependent recognition of the start codon. Mutations in the eIF3c RNA-binding motif also reduce 40S ribosomal subunit binding to eIF3, and inhibit eIF5B-dependent steps downstream of start codon recognition. These results provide the first connection between the structure of the central translation initiation factor eIF3 and recognition of the HCV genomic RNA start codon, molecular interactions that likely extend to the human transcriptome

    N-TERMINAL PROCESSING OF RIBOSOMAL PROTEIN L27 IN STAPHYLOCOCCUS AUREUS

    Get PDF
    The bacterial ribosome is essential to cell growth yet little is known about how its proteins attain their mature structures. Recent studies indicate that certain Staphlyococcus aureus bacteriophage protein sequences contain specific sites that may be cleaved by a non-bacteriophage enzyme (Poliakov et al. 2008). The phage cleavage site was found to bear sequence similarity to the N-terminus of S. aureus ribosomal protein L27. Previous studies in E. coli (Wower et al.1998; Maguire et al. 2005) found that L27 is situated adjacent to the ribosomal peptidyl transferase site, where it likely aids in new peptide formation. The predicted S. aureus L27 protein contains an additional N-terminal sequence not observed within the N-terminus of the otherwise similar E. coli L27; this sequence appears to be cleaved, indicating yet-unobserved ribosomal protein post-translational processing and use of host processes by phage. Phylogenetic analysis shows that L27 processing has the potential to be highly conserved. Further study of this phenomenon may aid antibiotic development

    NASSAM: a server to search for and annotate tertiary interactions and motifs in three-dimensional structures of complex RNA molecules

    Get PDF
    Similarities in the 3D patterns of RNA base interactions or arrangements can provide insights into their functions and roles in stabilization of the RNA 3D structure. Nucleic Acids Search for Substructures and Motifs (NASSAM) is a graph theoretical program that can search for 3D patterns of base arrangements by representing the bases as pseudo-atoms. The geometric relationship of the pseudo-atoms to each other as a pattern can be represented as a labeled graph where the pseudo-atoms are the graph's nodes while the edges are the inter-pseudo-atomic distances. The input files for NASSAM are PDB formatted 3D coordinates. This web server can be used to identify matches of base arrangement patterns in a query structure to annotated patterns that have been reported in the literature or that have possible functional and structural stabilization implications. The NASSAM program is freely accessible without any login requirement at http://mfrlab.org/grafss/nassam/

    Fungicide Resistance Genetics of Apple Scab fungus Venturia inaequalis

    Get PDF
    Apple scab, caused by the ascomycete fungus Venturia inaequalis, is considered the most devastating disease on domestic apple crops. Apples are the most important cultivated crop in temperate regions and the United States produced about 4.6 million tons of apples in 2010. Traditional methods to control fungal plant diseases like apple scab are based on the use of chemical compounds that may produce serious negative effects, mainly related with environmental pollution and the development of fungicide resistance. Identifying genes and mechanisms of fungicide resistance in V. inaequalis is imperative to developing new and more effective defenses against the spread of resistance
    • 

    corecore