1,783 research outputs found

    A Survey of Parallel Sequential Pattern Mining

    Full text link
    With the growing popularity of shared resources, large volumes of complex data of different types are collected automatically. Traditional data mining algorithms generally have problems and challenges including huge memory cost, low processing speed, and inadequate hard disk space. As a fundamental task of data mining, sequential pattern mining (SPM) is used in a wide variety of real-life applications. However, it is more complex and challenging than other pattern mining tasks, i.e., frequent itemset mining and association rule mining, and also suffers from the above challenges when handling the large-scale data. To solve these problems, mining sequential patterns in a parallel or distributed computing environment has emerged as an important issue with many applications. In this paper, an in-depth survey of the current status of parallel sequential pattern mining (PSPM) is investigated and provided, including detailed categorization of traditional serial SPM approaches, and state of the art parallel SPM. We review the related work of parallel sequential pattern mining in detail, including partition-based algorithms for PSPM, Apriori-based PSPM, pattern growth based PSPM, and hybrid algorithms for PSPM, and provide deep description (i.e., characteristics, advantages, disadvantages and summarization) of these parallel approaches of PSPM. Some advanced topics for PSPM, including parallel quantitative / weighted / utility sequential pattern mining, PSPM from uncertain data and stream data, hardware acceleration for PSPM, are further reviewed in details. Besides, we review and provide some well-known open-source software of PSPM. Finally, we summarize some challenges and opportunities of PSPM in the big data era.Comment: Accepted by ACM Trans. on Knowl. Discov. Data, 33 page

    Accelerating recurrent neural network training using sequence bucketing and multi-GPU data parallelization

    Full text link
    An efficient algorithm for recurrent neural network training is presented. The approach increases the training speed for tasks where a length of the input sequence may vary significantly. The proposed approach is based on the optimal batch bucketing by input sequence length and data parallelization on multiple graphical processing units. The baseline training performance without sequence bucketing is compared with the proposed solution for a different number of buckets. An example is given for the online handwriting recognition task using an LSTM recurrent neural network. The evaluation is performed in terms of the wall clock time, number of epochs, and validation loss value.Comment: 4 pages, 5 figures, Comments, 2016 IEEE First International Conference on Data Stream Mining & Processing (DSMP), Lviv, 201

    Technical Report: Accelerating Dynamic Graph Analytics on GPUs

    Full text link
    As graph analytics often involves compute-intensive operations, GPUs have been extensively used to accelerate the processing. However, in many applications such as social networks, cyber security, and fraud detection, their representative graphs evolve frequently and one has to perform a rebuild of the graph structure on GPUs to incorporate the updates. Hence, rebuilding the graphs becomes the bottleneck of processing high-speed graph streams. In this paper, we propose a GPU-based dynamic graph storage scheme to support existing graph algorithms easily. Furthermore, we propose parallel update algorithms to support efficient stream updates so that the maintained graph is immediately available for high-speed analytic processing on GPUs. Our extensive experiments with three streaming applications on large-scale real and synthetic datasets demonstrate the superior performance of our proposed approach.Comment: 34 pages, 18 figure

    Computational Intelligence Challenges and Applications on Large-Scale Astronomical Time Series Databases

    Full text link
    Time-domain astronomy (TDA) is facing a paradigm shift caused by the exponential growth of the sample size, data complexity and data generation rates of new astronomical sky surveys. For example, the Large Synoptic Survey Telescope (LSST), which will begin operations in northern Chile in 2022, will generate a nearly 150 Petabyte imaging dataset of the southern hemisphere sky. The LSST will stream data at rates of 2 Terabytes per hour, effectively capturing an unprecedented movie of the sky. The LSST is expected not only to improve our understanding of time-varying astrophysical objects, but also to reveal a plethora of yet unknown faint and fast-varying phenomena. To cope with a change of paradigm to data-driven astronomy, the fields of astroinformatics and astrostatistics have been created recently. The new data-oriented paradigms for astronomy combine statistics, data mining, knowledge discovery, machine learning and computational intelligence, in order to provide the automated and robust methods needed for the rapid detection and classification of known astrophysical objects as well as the unsupervised characterization of novel phenomena. In this article we present an overview of machine learning and computational intelligence applications to TDA. Future big data challenges and new lines of research in TDA, focusing on the LSST, are identified and discussed from the viewpoint of computational intelligence/machine learning. Interdisciplinary collaboration will be required to cope with the challenges posed by the deluge of astronomical data coming from the LSST

    Fine-Grained Land Use Classification at the City Scale Using Ground-Level Images

    Full text link
    We perform fine-grained land use mapping at the city scale using ground-level images. Mapping land use is considerably more difficult than mapping land cover and is generally not possible using overhead imagery as it requires close-up views and seeing inside buildings. We postulate that the growing collections of georeferenced, ground-level images suggest an alternate approach to this geographic knowledge discovery problem. We develop a general framework that uses Flickr images to map 45 different land-use classes for the City of San Francisco. Individual images are classified using a novel convolutional neural network containing two streams, one for recognizing objects and another for recognizing scenes. This network is trained in an end-to-end manner directly on the labeled training images. We propose several strategies to overcome the noisiness of our user-generated data including search-based training set augmentation and online adaptive training. We derive a ground truth map of San Francisco in order to evaluate our method. We demonstrate the effectiveness of our approach through geo-visualization and quantitative analysis. Our framework achieves over 29% recall at the individual land parcel level which represents a strong baseline for the challenging 45-way land use classification problem especially given the noisiness of the image data

    FLASH: Randomized Algorithms Accelerated over CPU-GPU for Ultra-High Dimensional Similarity Search

    Full text link
    We present FLASH (\textbf{F}ast \textbf{L}SH \textbf{A}lgorithm for \textbf{S}imilarity search accelerated with \textbf{H}PC), a similarity search system for ultra-high dimensional datasets on a single machine, that does not require similarity computations and is tailored for high-performance computing platforms. By leveraging a LSH style randomized indexing procedure and combining it with several principled techniques, such as reservoir sampling, recent advances in one-pass minwise hashing, and count based estimations, we reduce the computational and parallelization costs of similarity search, while retaining sound theoretical guarantees. We evaluate FLASH on several real, high-dimensional datasets from different domains, including text, malicious URL, click-through prediction, social networks, etc. Our experiments shed new light on the difficulties associated with datasets having several million dimensions. Current state-of-the-art implementations either fail on the presented scale or are orders of magnitude slower than FLASH. FLASH is capable of computing an approximate k-NN graph, from scratch, over the full webspam dataset (1.3 billion nonzeros) in less than 10 seconds. Computing a full k-NN graph in less than 10 seconds on the webspam dataset, using brute-force (n2Dn^2D), will require at least 20 teraflops. We provide CPU and GPU implementations of FLASH for replicability of our results

    GPU Accelerated Similarity Self-Join for Multi-Dimensional Data

    Full text link
    The self-join finds all objects in a dataset that are within a search distance, epsilon, of each other; therefore, the self-join is a building block of many algorithms. We advance a GPU-accelerated self-join algorithm targeted towards high dimensional data. The massive parallelism afforded by the GPU and high aggregate memory bandwidth makes the architecture well-suited for data-intensive workloads. We leverage a grid-based, GPU-tailored index to perform range queries. We propose the following optimizations: (i) a trade-off between candidate set filtering and index search overhead by exploiting properties of the index; (ii) reordering the data based on variance in each dimension to improve the filtering power of the index; and (iii) a pruning method for reducing the number of expensive distance calculations. Across most scenarios on real-world and synthetic datasets, our algorithm outperforms the parallel state-of-the-art approach. Exascale systems are converging on heterogeneous distributed-memory architectures. We show that an entity partitioning method can be utilized to achieve a balanced workload, and thus good scalability for multi-GPU or distributed-memory self-joins

    Graphics Processing Units and High-Dimensional Optimization

    Full text link
    This paper discusses the potential of graphics processing units (GPUs) in high-dimensional optimization problems. A single GPU card with hundreds of arithmetic cores can be inserted in a personal computer and dramatically accelerates many statistical algorithms. To exploit these devices fully, optimization algorithms should reduce to multiple parallel tasks, each accessing a limited amount of data. These criteria favor EM and MM algorithms that separate parameters and data. To a lesser extent block relaxation and coordinate descent and ascent also qualify. We demonstrate the utility of GPUs in nonnegative matrix factorization, PET image reconstruction, and multidimensional scaling. Speedups of 100 fold can easily be attained. Over the next decade, GPUs will fundamentally alter the landscape of computational statistics. It is time for more statisticians to get on-board

    A Data as a Service (DaaS) Model for GPU-based Data Analytics

    Full text link
    Cloud-based services with resources to be provisioned for consumers are increasingly the norm, especially with respect to Big data, spatiotemporal data mining and application services that impose a user's agreed Quality of Service (QoS) rules or Service Level Agreement (SLA). Considering the pervasive nature of data centers and cloud system, there is a need for a real-time analytics of the systems considering cost, utility and energy. This work presents an overlay model of GPU system for Data As A Service (DaaS) to give a real-time data analysis of network data, customers, investors and users' data from the datacenters or cloud system. Using a modeled layer to define a learning protocol and system, we give a custom, profitable system for DaaS on GPU. The GPU-enabled pre-processing and initial operations of the clustering model analysis is promising as shown in the results. We examine the model on real-world data sets to model a big data set or spatiotemporal data mining services. We also produce results of our model with clustering, neural networks' Self-organizing feature maps (SOFM or SOM) to produce a distribution of the clustering for DaaS model. The experimental results thus far show a promising model that could enhance SLA and or QoS based DaaS.Comment: Accepted, 23 December 2017, by the IEEE IFIP NTMS Workshop on Big Data and Emerging Trends WBD-ET 2018; it was later withdrawn because of funding issues. An extended/enhanced version will be published in future dates in related journal

    GraphVite: A High-Performance CPU-GPU Hybrid System for Node Embedding

    Full text link
    Learning continuous representations of nodes is attracting growing interest in both academia and industry recently, due to their simplicity and effectiveness in a variety of applications. Most of existing node embedding algorithms and systems are capable of processing networks with hundreds of thousands or a few millions of nodes. However, how to scale them to networks that have tens of millions or even hundreds of millions of nodes remains a challenging problem. In this paper, we propose GraphVite, a high-performance CPU-GPU hybrid system for training node embeddings, by co-optimizing the algorithm and the system. On the CPU end, augmented edge samples are parallelly generated by random walks in an online fashion on the network, and serve as the training data. On the GPU end, a novel parallel negative sampling is proposed to leverage multiple GPUs to train node embeddings simultaneously, without much data transfer and synchronization. Moreover, an efficient collaboration strategy is proposed to further reduce the synchronization cost between CPUs and GPUs. Experiments on multiple real-world networks show that GraphVite is super efficient. It takes only about one minute for a network with 1 million nodes and 5 million edges on a single machine with 4 GPUs, and takes around 20 hours for a network with 66 million nodes and 1.8 billion edges. Compared to the current fastest system, GraphVite is about 50 times faster without any sacrifice on performance.Comment: accepted at WWW 201
    • …
    corecore