2,916 research outputs found

    An Investigation into the Performance Evaluation of Connected Vehicle Applications: From Real-World Experiment to Parallel Simulation Paradigm

    Get PDF
    A novel system was developed that provides drivers lane merge advisories, using vehicle trajectories obtained through Dedicated Short Range Communication (DSRC). It was successfully tested on a freeway using three vehicles, then targeted for further testing, via simulation. The failure of contemporary simulators to effectively model large, complex urban transportation networks then motivated further research into distributed and parallel traffic simulation. An architecture for a closed-loop, parallel simulator was devised, using a new algorithm that accounts for boundary nodes, traffic signals, intersections, road lengths, traffic density, and counts of lanes; it partitions a sample, Tennessee road network more efficiently than tools like METIS, which increase interprocess communications (IPC) overhead by partitioning more transportation corridors. The simulator uses logarithmic accumulation to synchronize parallel simulations, further reducing IPC. Analyses suggest this eliminates up to one-third of IPC overhead incurred by a linear accumulation model

    Doctor of Philosophy

    Get PDF
    dissertationThe Active Traffic and Demand Management (ATDM) initiative aims to integrate various management strategies and control measures so as to achieve the mobility, environment and sustainability goals. To support the active monitoring and management of real-world complex traffic conditions, the first objective of this dissertation is to develop a travel time reliability estimation and prediction methodology that can provide informed decisions for the management and operation agencies and travelers. A systematic modeling framework was developed to consider a corridor with multiple bottlenecks, and a series of close-form formulas was derived to quantify the travel time distribution under both stochastic demand and capacity, with possible on-ramp and off-ramp flow changes. Traffic state estimation techniques are often used to guide operational management decisions, and accurate traffic estimates are critically needed in ATDM applications designed for reducing instability, volatility and emissions in the transportation system. By capturing the essential forward and backward wave propagation characteristics under possible random measurement errors, this dissertation proposes a unified representation with a simple but theoretically sound explanation for traffic observations under free-flow, congested and dynamic transient conditions. This study also presents a linear programming model to quantify the value of traffic measurements, in a heterogeneous data environment with fixed sensors, Bluetooth readers and GPS sensors. It is important to design comprehensive traffic control measures that can systematically address deteriorating congestion and environmental issues. To better evaluate and assess the mobility and environmental benefits of the transportation improvement plans, this dissertation also discusses a cross-resolution modeling framework for integrating a microscopic emission model with the existing mesoscopic traffic simulation model. A simplified car-following model-based vehicle trajectory construction method is used to generate the high-resolution vehicle trajectory profiles and resulting emission output. In addition, this dissertation discusses a number of important issues for a cloud computing-based software system implementation. A prototype of a reliability-based traveler information provision and dissemination system is developed to offer a rich set of travel reliability information for the general public and traffic management and planning organizations

    A People's History Of Recent Urban Transportation Innovation

    Get PDF
    Who are the people leading the charge in urban transportation? As our report explains, the short answer is that it takes leaders from three different sectors of urban society to make change happen quickly.First, there needs to be a robust civic vanguard, the more diverse their range of skills and participation, the better. Second, mayors, commissioners and other city leaders need to create the mandate and champion the change. The third sector is the agency staff. When these three sectors align, relatively quick transformation is possible. Several cities, including New York and Pittsburgh, recently experienced this alignment of a healthy civic community, a visionary and bold mayor and transportation head, and internal agency champions. Our report also highlighted the potential of other cities, such as Charlotte, where the civic sector continues to build on and widen their base

    2nd Symposium on Management of Future motorway and urban Traffic Systems (MFTS 2018): Booklet of abstracts: Ispra, 11-12 June 2018

    Get PDF
    The Symposium focuses on future traffic management systems, covering the subjects of traffic control, estimation, and modelling of motorway and urban networks, with particular emphasis on the presence of advanced vehicle communication and automation technologies. As connectivity and automation are being progressively introduced in our transport and mobility systems, there is indeed a growing need to understand the implications and opportunities for an enhanced traffic management as well as to identify innovative ways and tools to optimise traffic efficiency. In particular the debate on centralised versus decentralised traffic management in the presence of connected and automated vehicles has started attracting the attention of the research community. In this context, the Symposium provides a remarkable opportunity to share novel ideas and discuss future research directions.JRC.C.4-Sustainable Transpor

    Providing Real-time Driver Advisories in Connected Vehicles: A Data-Driven Approach Supported by Field Experimentation

    Get PDF
    Approximately 94\% of the annual transportation crashes in the U.S. involve driver errors and violations contributing to the $1 Trillion losses in the economy. Recent V2X communication technologies enabled by Dedicated Short Range Communication (DSRC) and Cellular-V2X (C-V2X) can provide cost-effective solutions for many of these transportation safety applications and help reduce crashes up to 85%. This research aims towards two primary goals. First, understanding the feasibility of deploying V2V-based safety critical applications under the constraints of limited communication ranges and adverse roadway conditions. Second, to develop a prototype application for providing real-time advisories for hazardous driving behaviors and to notify neighboring vehicles using available wireless communication platform. Towards accomplishing the first goal, we have developed a mathematical model to quantify V2V communication parameters and constraints pertaining to a DSRC-based “Safe pass advisory” application and validated the theoretical model using field experiments by measuring the communication ranges between two oncoming vehicles. We also investigated the impacts of varying altitudes, vehicle-interior obstacles, and OBU placement on V2V communication reliability and its implications. Along the direction of the second goal, we derived a data-driven model to characterize the acceleration/deceleration profile of a regular passenger vehicle with respect to speed and throttle position. As a proof of concept demonstration, we implemented an IoT-based communication architecture for disseminating the hazardous driving alerts to vulnerable drivers through cellular and/or V2X communication infrastructure

    Enabling Mixed Autonomy Traffic Control

    Full text link
    We demonstrate a new capability of automated vehicles: mixed autonomy traffic control. With this new capability, automated vehicles can shape the traffic flows composed of other non-automated vehicles, which has the promise to improve safety, efficiency, and energy outcomes in transportation systems at a societal scale. Investigating mixed autonomy mobile traffic control must be done in situ given that the complex dynamics of other drivers and their response to a team of automated vehicles cannot be effectively modeled. This capability has been blocked because there is no existing scalable and affordable platform for experimental control. This paper introduces an extensible open-source hardware and software platform, enabling a team of 100 vehicles to execute several different vehicular control algorithms as a collaborative fleet, composed of three different makes and models, which drove 22752 miles in a combined 1022 hours, over 5 days in Nashville, TN in November 2022
    corecore