4,090 research outputs found

    Interactive visual exploration of a large spatio-temporal dataset: Reflections on a geovisualization mashup

    Get PDF
    Exploratory visual analysis is useful for the preliminary investigation of large structured, multifaceted spatio-temporal datasets. This process requires the selection and aggregation of records by time, space and attribute, the ability to transform data and the flexibility to apply appropriate visual encodings and interactions. We propose an approach inspired by geographical 'mashups' in which freely-available functionality and data are loosely but flexibly combined using de facto exchange standards. Our case study combines MySQL, PHP and the LandSerf GIS to allow Google Earth to be used for visual synthesis and interaction with encodings described in KML. This approach is applied to the exploration of a log of 1.42 million requests made of a mobile directory service. Novel combinations of interaction and visual encoding are developed including spatial 'tag clouds', 'tag maps', 'data dials' and multi-scale density surfaces. Four aspects of the approach are informally evaluated: the visual encodings employed, their success in the visual exploration of the clataset, the specific tools used and the 'rnashup' approach. Preliminary findings will be beneficial to others considering using mashups for visualization. The specific techniques developed may be more widely applied to offer insights into the structure of multifarious spatio-temporal data of the type explored here

    A generic approach to simplification of geodata for mobile applications

    Get PDF

    Development of Mining Sector Applications for Emerging Remote Sensing and Deep Learning Technologies

    Get PDF
    This thesis uses neural networks and deep learning to address practical, real-world problems in the mining sector. The main focus is on developing novel applications in the area of object detection from remotely sensed data. This area has many potential mining applications and is an important part of moving towards data driven strategic decision making across the mining sector. The scientific contributions of this research are twofold; firstly, each of the three case studies demonstrate new applications which couple remote sensing and neural network based technologies for improved data driven decision making. Secondly, the thesis presents a framework to guide implementation of these technologies in the mining sector, providing a guide for researchers and professionals undertaking further studies of this type. The first case study builds a fully connected neural network method to locate supporting rock bolts from 3D laser scan data. This method combines input features from the remote sensing and mobile robotics research communities, generating accuracy scores up to 22% higher than those found using either feature set in isolation. The neural network approach also is compared to the widely used random forest classifier and is shown to outperform this classifier on the test datasets. Additionally, the algorithmsā€™ performance is enhanced by adding a confusion class to the training data and by grouping the output predictions using density based spatial clustering. The method is tested on two datasets, gathered using different laser scanners, in different types of underground mines which have different rock bolting patterns. In both cases the method is found to be highly capable of detecting the rock bolts with recall scores of 0.87-0.96. The second case study investigates modern deep learning for LiDAR data. Here, multiple transfer learning strategies and LiDAR data representations are examined for the task of identifying historic mining remains. A transfer learning approach based on a Lunar crater detection model is used, due to the task similarities between both the underlying data structures and the geometries of the objects to be detected. The relationship between dataset resolution and detection accuracy is also examined, with the results showing that the approach is capable of detecting pits and shafts to a high degree of accuracy with precision and recall scores between 0.80-0.92, provided the input data is of sufficient quality and resolution. Alongside resolution, different LiDAR data representations are explored, showing that the precision-recall balance varies depending on the input LiDAR data representation. The third case study creates a deep convolutional neural network model to detect artisanal scale mining from multispectral satellite data. This model is trained from initialisation without transfer learning and demonstrates that accurate multispectral models can be built from a smaller training dataset when appropriate design and data augmentation strategies are adopted. Alongside the deep learning model, novel mosaicing algorithms are developed both to improve cloud cover penetration and to decrease noise in the final prediction maps. When applied to the study area, the results from this model provide valuable information about the expansion, migration and forest encroachment of artisanal scale mining in southwestern Ghana over the last four years. Finally, this thesis presents an implementation framework for these neural network based object detection models, to generalise the findings from this research to new mining sector deep learning tasks. This framework can be used to identify applications which would benefit from neural network approaches; to build the models; and to apply these algorithms in a real world environment. The case study chapters confirm that the neural network models are capable of interpreting remotely sensed data to a high degree of accuracy on real world mining problems, while the framework guides the development of new models to solve a wide range of related challenges

    Management of spatial data for visualization on mobile devices

    Get PDF
    Vector-based mapping is emerging as a preferred format in Location-based Services(LBS), because it can deliver an up-to-date and interactive map visualization. The Progressive Transmission(PT) technique has been developed to enable the ecient transmission of vector data over the internet by delivering various incremental levels of detail(LoD). However, it is still challenging to apply this technique in a mobile context due to many inherent limitations of mobile devices, such as small screen size, slow processors and limited memory. Taking account of these limitations, PT has been extended by developing a framework of ecient data management for the visualization of spatial data on mobile devices. A data generalization framework is proposed and implemented in a software application. This application can signicantly reduce the volume of data for transmission and enable quick access to a simplied version of data while preserving appropriate visualization quality. Using volunteered geographic information as a case-study, the framework shows exibility in delivering up-to-date spatial information from dynamic data sources. Three models of PT are designed and implemented to transmit the additional LoD renements: a full scale PT as an inverse of generalisation, a viewdependent PT, and a heuristic optimised view-dependent PT. These models are evaluated with user trials and application examples. The heuristic optimised view-dependent PT has shown a signicant enhancement over the traditional PT in terms of bandwidth-saving and smoothness of transitions. A parallel data management strategy associated with three corresponding algorithms has been developed to handle LoD spatial data on mobile clients. This strategy enables the map rendering to be performed in parallel with a process which retrieves the data for the next map location the user will require. A viewdependent approach has been integrated to monitor the volume of each LoD for visible area. The demonstration of a exible rendering style shows its potential use in visualizing dynamic geoprocessed data. Future work may extend this to integrate topological constraints and semantic constraints for enhancing the vector map visualization

    Developing serious games for cultural heritage: a state-of-the-art review

    Get PDF
    Although the widespread use of gaming for leisure purposes has been well documented, the use of games to support cultural heritage purposes, such as historical teaching and learning, or for enhancing museum visits, has been less well considered. The state-of-the-art in serious game technology is identical to that of the state-of-the-art in entertainment games technology. As a result, the field of serious heritage games concerns itself with recent advances in computer games, real-time computer graphics, virtual and augmented reality and artificial intelligence. On the other hand, the main strengths of serious gaming applications may be generalised as being in the areas of communication, visual expression of information, collaboration mechanisms, interactivity and entertainment. In this report, we will focus on the state-of-the-art with respect to the theories, methods and technologies used in serious heritage games. We provide an overview of existing literature of relevance to the domain, discuss the strengths and weaknesses of the described methods and point out unsolved problems and challenges. In addition, several case studies illustrating the application of methods and technologies used in cultural heritage are presented

    3D City Models and urban information: Current issues and perspectives

    Get PDF
    Considering sustainable development of cities implies investigating cities in a holistic way taking into account many interrelations between various urban or environmental issues. 3D city models are increasingly used in different cities and countries for an intended wide range of applications beyond mere visualization. Could these 3D City models be used to integrate urban and environmental knowledge? How could they be improved to fulfill such role? We believe that enriching the semantics of current 3D city models, would extend their functionality and usability; therefore, they could serve as integration platforms of the knowledge related to urban and environmental issues allowing a huge and significant improvement of city sustainable management and development. But which elements need to be added to 3D city models? What are the most efficient ways to realize such improvement / enrichment? How to evaluate the usability of these improved 3D city models? These were the questions tackled by the COST Action TU0801 ā€œSemantic enrichment of 3D city models for sustainable urban developmentā€. This book gathers various materials developed all along the four year of the Action and the significant breakthroughs

    Geographically Referenced Data for Social Science

    Get PDF
    An estimated 80% of all information has a spatial reference. Information about households as well as environmental data can be linked to precise locations in the real world. This offers benefits for combining different datasets via the spatial location and, furthermore, spatial indicators such as distance and accessibility can be included in analyses and models. HSpatial patterns of real-world social phenomena can be identified and described and possible interrelationships between datasets can be studied. Michael F. GOODCHILD, a Professor of Geography at the University of California, Santa Barbara and principal investigator at the Center for Spatially Integrated Social Science (CSISS), summarizes the growing significance of space, spatiality, location, and place in social science research as follows: "(...) for many social scientists, location is just another attribute in a table and not a very important one at that. After all, the processes that lead to social deprivation, crime, or family dysfunction are more or less the same everywhere, and, in the minds of social scientists, many other variables, such as education, unemployment, or age, are far more interesting as explanatory factors of social phenomena than geographic location. Geographers have been almost alone among social scientists in their concern for space; to economists, sociologists, political scientists, demographers, and anthropologists, space has been a minor issue and one that these disciplines have often been happy to leave to geographers. But that situation is changing, and many social scientists have begun to talk about a "spatial turn," a new interest in location, and a new "spatial social science" that crosses the traditional boundaries between disciplines. Interest is rising in GIS (Geographic Information Systems) and in what GIS makes possible: mapping, spatial analysis, and spatial modelling. At the same time, new tools are becoming available that give GIS users access to some of the big ideas of social science."
    • ā€¦
    corecore