2,225 research outputs found

    The lifecycle of provenance metadata and its associated challenges and opportunities

    Full text link
    This chapter outlines some of the challenges and opportunities associated with adopting provenance principles and standards in a variety of disciplines, including data publication and reuse, and information sciences

    Causality and the semantics of provenance

    Full text link
    Provenance, or information about the sources, derivation, custody or history of data, has been studied recently in a number of contexts, including databases, scientific workflows and the Semantic Web. Many provenance mechanisms have been developed, motivated by informal notions such as influence, dependence, explanation and causality. However, there has been little study of whether these mechanisms formally satisfy appropriate policies or even how to formalize relevant motivating concepts such as causality. We contend that mathematical models of these concepts are needed to justify and compare provenance techniques. In this paper we review a theory of causality based on structural models that has been developed in artificial intelligence, and describe work in progress on a causal semantics for provenance graphs.Comment: Workshop submissio

    BioWorkbench: A High-Performance Framework for Managing and Analyzing Bioinformatics Experiments

    Get PDF
    Advances in sequencing techniques have led to exponential growth in biological data, demanding the development of large-scale bioinformatics experiments. Because these experiments are computation- and data-intensive, they require high-performance computing (HPC) techniques and can benefit from specialized technologies such as Scientific Workflow Management Systems (SWfMS) and databases. In this work, we present BioWorkbench, a framework for managing and analyzing bioinformatics experiments. This framework automatically collects provenance data, including both performance data from workflow execution and data from the scientific domain of the workflow application. Provenance data can be analyzed through a web application that abstracts a set of queries to the provenance database, simplifying access to provenance information. We evaluate BioWorkbench using three case studies: SwiftPhylo, a phylogenetic tree assembly workflow; SwiftGECKO, a comparative genomics workflow; and RASflow, a RASopathy analysis workflow. We analyze each workflow from both computational and scientific domain perspectives, by using queries to a provenance and annotation database. Some of these queries are available as a pre-built feature of the BioWorkbench web application. Through the provenance data, we show that the framework is scalable and achieves high-performance, reducing up to 98% of the case studies execution time. We also show how the application of machine learning techniques can enrich the analysis process

    Automatic vs Manual Provenance Abstractions: Mind the Gap

    Full text link
    In recent years the need to simplify or to hide sensitive information in provenance has given way to research on provenance abstraction. In the context of scientific workflows, existing research provides techniques to semi automatically create abstractions of a given workflow description, which is in turn used as filters over the workflow's provenance traces. An alternative approach that is commonly adopted by scientists is to build workflows with abstractions embedded into the workflow's design, such as using sub-workflows. This paper reports on the comparison of manual versus semi-automated approaches in a context where result abstractions are used to filter report-worthy results of computational scientific analyses. Specifically; we take a real-world workflow containing user-created design abstractions and compare these with abstractions created by ZOOM UserViews and Workflow Summaries systems. Our comparison shows that semi-automatic and manual approaches largely overlap from a process perspective, meanwhile, there is a dramatic mismatch in terms of data artefacts retained in an abstracted account of derivation. We discuss reasons and suggest future research directions.Comment: Preprint accepted to the 2016 workshop on the Theory and Applications of Provenance, TAPP 201

    Scientific Social Objects: The Social Objects and Multidimensional Network of the myExperiment Website

    No full text
    Scientific research is increasingly conducted digitally and online, and consequently we are seeing the emergence of new digital objects shared as part of the conduct and discourse of science. These Scientific Social Objects are more than lumps of domain-specific data: they may comprise multiple components which can also be shared separately and independently, and some contain descriptions of scientific processes from which new objects will be generated. Using the myExperiment social website as a case study we explore Scientific Social Objects and discuss their evolution

    Data Provenance Inference in Logic Programming: Reducing Effort of Instance-driven Debugging

    Get PDF
    Data provenance allows scientists in different domains validating their models and algorithms to find out anomalies and unexpected behaviors. In previous works, we described on-the-fly interpretation of (Python) scripts to build workflow provenance graph automatically and then infer fine-grained provenance information based on the workflow provenance graph and the availability of data. To broaden the scope of our approach and demonstrate its viability, in this paper we extend it beyond procedural languages, to be used for purely declarative languages such as logic programming under the stable model semantics. For experiments and validation, we use the Answer Set Programming solver oClingo, which makes it possible to formulate and solve stream reasoning problems in a purely declarative fashion. We demonstrate how the benefits of the provenance inference over the explicit provenance still holds in a declarative setting, and we briefly discuss the potential impact for declarative programming, in particular for instance-driven debugging of the model in declarative problem solving

    A Linked Data Approach to Sharing Workflows and Workflow Results

    No full text
    A bioinformatics analysis pipeline is often highly elaborate, due to the inherent complexity of biological systems and the variety and size of datasets. A digital equivalent of the ‘Materials and Methods’ section in wet laboratory publications would be highly beneficial to bioinformatics, for evaluating evidence and examining data across related experiments, while introducing the potential to find associated resources and integrate them as data and services. We present initial steps towards preserving bioinformatics ‘materials and methods’ by exploiting the workflow paradigm for capturing the design of a data analysis pipeline, and RDF to link the workflow, its component services, run-time provenance, and a personalized biological interpretation of the results. An example shows the reproduction of the unique graph of an analysis procedure, its results, provenance, and personal interpretation of a text mining experiment. It links data from Taverna, myExperiment.org, BioCatalogue.org, and ConceptWiki.org. The approach is relatively ‘light-weight’ and unobtrusive to bioinformatics users
    • …
    corecore