5,889 research outputs found

    Too Trivial To Test? An Inverse View on Defect Prediction to Identify Methods with Low Fault Risk

    Get PDF
    Background. Test resources are usually limited and therefore it is often not possible to completely test an application before a release. To cope with the problem of scarce resources, development teams can apply defect prediction to identify fault-prone code regions. However, defect prediction tends to low precision in cross-project prediction scenarios. Aims. We take an inverse view on defect prediction and aim to identify methods that can be deferred when testing because they contain hardly any faults due to their code being "trivial". We expect that characteristics of such methods might be project-independent, so that our approach could improve cross-project predictions. Method. We compute code metrics and apply association rule mining to create rules for identifying methods with low fault risk. We conduct an empirical study to assess our approach with six Java open-source projects containing precise fault data at the method level. Results. Our results show that inverse defect prediction can identify approx. 32-44% of the methods of a project to have a low fault risk; on average, they are about six times less likely to contain a fault than other methods. In cross-project predictions with larger, more diversified training sets, identified methods are even eleven times less likely to contain a fault. Conclusions. Inverse defect prediction supports the efficient allocation of test resources by identifying methods that can be treated with less priority in testing activities and is well applicable in cross-project prediction scenarios.Comment: Submitted to PeerJ C

    Software defect prediction: do different classifiers find the same defects?

    Get PDF
    Open Access: This article is distributed under the terms of the Creative Commons Attribution 4.0 International License CC BY 4.0 (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.During the last 10 years, hundreds of different defect prediction models have been published. The performance of the classifiers used in these models is reported to be similar with models rarely performing above the predictive performance ceiling of about 80% recall. We investigate the individual defects that four classifiers predict and analyse the level of prediction uncertainty produced by these classifiers. We perform a sensitivity analysis to compare the performance of Random Forest, Naïve Bayes, RPart and SVM classifiers when predicting defects in NASA, open source and commercial datasets. The defect predictions that each classifier makes is captured in a confusion matrix and the prediction uncertainty of each classifier is compared. Despite similar predictive performance values for these four classifiers, each detects different sets of defects. Some classifiers are more consistent in predicting defects than others. Our results confirm that a unique subset of defects can be detected by specific classifiers. However, while some classifiers are consistent in the predictions they make, other classifiers vary in their predictions. Given our results, we conclude that classifier ensembles with decision-making strategies not based on majority voting are likely to perform best in defect prediction.Peer reviewedFinal Published versio

    Generating Knowledge in Maintenance from Experience Feedback

    Get PDF
    Knowledge is nowadays considered as a significant source of performance improvement, but may be difficult to identify, structure, analyse and reuse properly. A possible source of knowledge is in the data and information stored in various modules of industrial information systems, like CMMS (Computerized Maintenance Management Systems) for maintenance. In that context, the main objective of this paper is to propose a framework allowing to manage and generate knowledge from information on past experiences, for improving the decisions related to the maintenance activity. In that purpose, we suggest an original Experience Feedback process dedicated to maintenance, allowing to capitalize on past interventions by i) formalizing the domain knowledge and experiences using a visual knowledge representation formalism with logical foundation (Conceptual Graphs); ii) extracting new knowledge thanks to association rules mining algorithms, using an innovative interactive approach; iii) interpreting and evaluating this new knowledge thanks to the reasoning operations of Conceptual Graphs. The suggested method is illustrated on a case study based on real data dealing with the maintenance of overhead cranes

    Do Bugs Propagate? An Empirical Analysis of Temporal Correlations Among Software Bugs

    Get PDF
    The occurrences of bugs are not isolated events, rather they may interact, affect each other, and trigger other latent bugs. Identifying and understanding bug correlations could help developers localize bug origins, predict potential bugs, and design better architectures of software artifacts to prevent bug affection. Many studies in the defect prediction and fault localization literature implied the dependence and interactions between multiple bugs, but few of them explicitly investigate the correlations of bugs across time steps and how bugs affect each other. In this paper, we perform social network analysis on the temporal correlations between bugs across time steps on software artifact ties, i.e., software graphs. Adopted from the correlation analysis methodology in social networks, we construct software graphs of three artifact ties such as function calls and type hierarchy and then perform longitudinal logistic regressions of time-lag bug correlations on these graphs. Our experiments on four open-source projects suggest that bugs can propagate as observed on certain artifact tie graphs. Based on our findings, we propose a hybrid artifact tie graph, a synthesis of a few well-known software graphs, that exhibits a higher degree of bug propagation. Our findings shed light on research for better bug prediction and localization models and help developers to perform maintenance actions to prevent consequential bugs
    • …
    corecore