27,028 research outputs found

    Neutron electric polarizability from unquenched lattice QCD using the background field approach

    Full text link
    A calculational scheme for obtaining the electric polarizability of the neutron in lattice QCD with dynamical quarks is developed, using the background field approach. The scheme differs substantially from methods previously used in the quenched approximation, the physical reason being that the QCD ensemble is no longer independent of the external electromagnetic field in the dynamical quark case. One is led to compute (certain integrals over) four-point functions. Particular emphasis is also placed on the physical role of constant external gauge fields on a finite lattice; the presence of these fields complicates the extraction of polarizabilities, since it gives rise to an additional shift of the neutron mass unrelated to polarizability effects. The method is tested on a SU(3) flavor-symmetric ensemble furnished by the MILC Collaboration, corresponding to a pion mass of m_pi = 759 MeV. Disconnected diagrams are evaluated using stochastic estimation. A small negative electric polarizability of alpha =(-2.0 +/- 0.9) 10^(-4) fm^3 is found for the neutron at this rather large pion mass; this result does not seem implausible in view of the qualitative behavior of alpha as a function of m_pi suggested by Chiral Effective Theory.Comment: 36 pages, 11 figures. Note added concerning analytic continuation in the external electric field; some notation made more precis

    Time-Sliced Perturbation Theory for Large Scale Structure I: General Formalism

    Full text link
    We present a new analytic approach to describe large scale structure formation in the mildly non-linear regime. The central object of the method is the time-dependent probability distribution function generating correlators of the cosmological observables at a given moment of time. Expanding the distribution function around the Gaussian weight we formulate a perturbative technique to calculate non-linear corrections to cosmological correlators, similar to the diagrammatic expansion in a three-dimensional Euclidean quantum field theory, with time playing the role of an external parameter. For the physically relevant case of cold dark matter in an Einstein--de Sitter universe, the time evolution of the distribution function can be found exactly and is encapsulated by a time-dependent coupling constant controlling the perturbative expansion. We show that all building blocks of the expansion are free from spurious infrared enhanced contributions that plague the standard cosmological perturbation theory. This paves the way towards the systematic resummation of infrared effects in large scale structure formation. We also argue that the approach proposed here provides a natural framework to account for the influence of short-scale dynamics on larger scales along the lines of effective field theory.Comment: 29 pages, 2 figures, discussion on IR safety expanded, appendix C added; version published in JCA

    Worm Algorithm for Problems of Quantum and Classical Statistics

    Get PDF
    This is a chapter of the multi-author book "Understanding Quantum Phase Transitions," edited by Lincoln Carr and published by Taylor and Francis. In this chapter, we give a general introduction to the worm algorithm and present important results highlighting the power of the approachComment: 27 pages, 15 figures, chapter in a boo

    Pattern formation for the Swift-Hohenberg equation on the hyperbolic plane

    Full text link
    We present an overview of pattern formation analysis for an analogue of the Swift-Hohenberg equation posed on the real hyperbolic space of dimension two, which we identify with the Poincar\'e disc D. Different types of patterns are considered: spatially periodic stationary solutions, radial solutions and traveling waves, however there are significant differences in the results with the Euclidean case. We apply equivariant bifurcation theory to the study of spatially periodic solutions on a given lattice of D also called H-planforms in reference with the "planforms" introduced for pattern formation in Euclidean space. We consider in details the case of the regular octagonal lattice and give a complete descriptions of all H-planforms bifurcating in this case. For radial solutions (in geodesic polar coordinates), we present a result of existence for stationary localized radial solutions, which we have adapted from techniques on the Euclidean plane. Finally, we show that unlike the Euclidean case, the Swift-Hohenberg equation in the hyperbolic plane undergoes a Hopf bifurcation to traveling waves which are invariant along horocycles of D and periodic in the "transverse" direction. We highlight our theoretical results with a selection of numerical simulations.Comment: Dedicated to Klaus Kirchg\"assne

    Renormalizing a BRST-invariant composite operator of mass dimension 2 in Yang-Mills theory

    Get PDF
    We discuss the renormalization of a BRST and anti-BRST invariant composite operator of mass dimension 2 in Yang-Mills theory with the general BRST and anti-BRST invariant gauge fixing term of the Lorentz type. The interest of this study stems from a recent claim that the non-vanishing vacuum condensate of the composite operator in question can be an origin of mass gap and quark confinement in any manifestly covariant gauge, as proposed by one of the authors. First, we obtain the renormalization group flow of the Yang-Mills theory. Next, we show the multiplicative renormalizability of the composite operator and that the BRST and anti-BRST invariance of the bare composite operator is preserved under the renormalization. Third, we perform the operator product expansion of the gluon and ghost propagators and obtain the Wilson coefficient corresponding to the vacuum condensate of mass dimension 2. Finally, we discuss the connection of this work with the previous works and argue the physical implications of the obtained results.Comment: 49 pages, 35 eps-files, A number of typographic errors are corrected. A paragraph is added in the beginning of section 5.3. Two equations (7.1) and (7.2) are added. A version to be published in Phys. Rev.
    • …
    corecore