328 research outputs found

    Prediction of Thrombectomy Functional Outcomes using Multimodal Data

    Full text link
    Recent randomised clinical trials have shown that patients with ischaemic stroke {due to occlusion of a large intracranial blood vessel} benefit from endovascular thrombectomy. However, predicting outcome of treatment in an individual patient remains a challenge. We propose a novel deep learning approach to directly exploit multimodal data (clinical metadata information, imaging data, and imaging biomarkers extracted from images) to estimate the success of endovascular treatment. We incorporate an attention mechanism in our architecture to model global feature inter-dependencies, both channel-wise and spatially. We perform comparative experiments using unimodal and multimodal data, to predict functional outcome (modified Rankin Scale score, mRS) and achieve 0.75 AUC for dichotomised mRS scores and 0.35 classification accuracy for individual mRS scores.Comment: Accepted at Medical Image Understanding and Analysis (MIUA) 202

    Brain cone beam computed tomography image analysis using ResNet50 for collateral circulation classification

    Get PDF
    Treatment of stroke patients can be effectively carried out with the help of collateral circulation performance. Collateral circulation scoring as it is now used is dependent on visual inspection, which can lead to an inter- and intra-rater discrepancy. In this study, a collateral circulation classification using the ResNet50 was analyzed by using cone beam computed tomography (CBCT) images for the ischemic stroke patient. The remarkable performance of deep learning classification helps neuroradiologists with fast image classification. A pre-trained deep network ResNet50 was applied to extract robust features and learn the structure of CBCT images in their convolutional layers. Next, the classification layer of the ResNet50 was performed into binary classification as “good” and “poor” classes. The images were divided by 80:20 for training and testing. The empirical results support the claim that the application of ResNet50 offers consistent accuracy, sensitivity, and specificity values. The performance value of the classification accuracy was 76.79%. The deep learning approach was employed to unveil how biological image analysis could generate incredibly dependable and repeatable outcomes. The experiments performed on CBCT images evidenced that the proposed ResNet50 using convolutional neural network (CNN) architecture is indeed effective in classifying collateral circulation

    Potential and limitations of computed tomography images as predictors of the outcome of ischemic stroke events: a review

    Get PDF
    The prediction of functional outcome after a stroke remains a relevant, open problem. In this article, we present a systematic review of approaches that have been proposed to predict the most likely functional outcome of ischemic stroke patients, as measured by the modified Rankin scale. Different methods use a variety of clinical information and features extracted from brain computed tomography (CT) scans, usually obtained at the time of hospital admission. Most studies have concluded that CT data contains useful information, but the use of this information by models does not always translate into statistically significant improvements in the quality of the predictions

    Development and assessment of learning-based vessel biomarkers from CTA in ischemic stroke

    Get PDF

    Development and assessment of learning-based vessel biomarkers from CTA in ischemic stroke

    Get PDF
    • …
    corecore