2,312 research outputs found

    Comparison of data-driven uncertainty quantification methods for a carbon dioxide storage benchmark scenario

    Full text link
    A variety of methods is available to quantify uncertainties arising with\-in the modeling of flow and transport in carbon dioxide storage, but there is a lack of thorough comparisons. Usually, raw data from such storage sites can hardly be described by theoretical statistical distributions since only very limited data is available. Hence, exact information on distribution shapes for all uncertain parameters is very rare in realistic applications. We discuss and compare four different methods tested for data-driven uncertainty quantification based on a benchmark scenario of carbon dioxide storage. In the benchmark, for which we provide data and code, carbon dioxide is injected into a saline aquifer modeled by the nonlinear capillarity-free fractional flow formulation for two incompressible fluid phases, namely carbon dioxide and brine. To cover different aspects of uncertainty quantification, we incorporate various sources of uncertainty such as uncertainty of boundary conditions, of conceptual model definitions and of material properties. We consider recent versions of the following non-intrusive and intrusive uncertainty quantification methods: arbitary polynomial chaos, spatially adaptive sparse grids, kernel-based greedy interpolation and hybrid stochastic Galerkin. The performance of each approach is demonstrated assessing expectation value and standard deviation of the carbon dioxide saturation against a reference statistic based on Monte Carlo sampling. We compare the convergence of all methods reporting on accuracy with respect to the number of model runs and resolution. Finally we offer suggestions about the methods' advantages and disadvantages that can guide the modeler for uncertainty quantification in carbon dioxide storage and beyond

    Multiscale Surrogate Modeling and Uncertainty Quantification for Periodic Composite Structures

    Full text link
    Computational modeling of the structural behavior of continuous fiber composite materials often takes into account the periodicity of the underlying micro-structure. A well established method dealing with the structural behavior of periodic micro-structures is the so- called Asymptotic Expansion Homogenization (AEH). By considering a periodic perturbation of the material displacement, scale bridging functions, also referred to as elastic correctors, can be derived in order to connect the strains at the level of the macro-structure with micro- structural strains. For complicated inhomogeneous micro-structures, the derivation of such functions is usually performed by the numerical solution of a PDE problem - typically with the Finite Element Method. Moreover, when dealing with uncertain micro-structural geometry and material parameters, there is considerable uncertainty introduced in the actual stresses experienced by the materials. Due to the high computational cost of computing the elastic correctors, the choice of a pure Monte-Carlo approach for dealing with the inevitable material and geometric uncertainties is clearly computationally intractable. This problem is even more pronounced when the effect of damage in the micro-scale is considered, where re-evaluation of the micro-structural representative volume element is necessary for every occurring damage. The novelty in this paper is that a non-intrusive surrogate modeling approach is employed with the purpose of directly bridging the macro-scale behavior of the structure with the material behavior in the micro-scale, therefore reducing the number of costly evaluations of corrector functions, allowing for future developments on the incorporation of fatigue or static damage in the analysis of composite structural components.Comment: Appeared in UNCECOMP 201

    Compressive sensing adaptation for polynomial chaos expansions

    Full text link
    Basis adaptation in Homogeneous Chaos spaces rely on a suitable rotation of the underlying Gaussian germ. Several rotations have been proposed in the literature resulting in adaptations with different convergence properties. In this paper we present a new adaptation mechanism that builds on compressive sensing algorithms, resulting in a reduced polynomial chaos approximation with optimal sparsity. The developed adaptation algorithm consists of a two-step optimization procedure that computes the optimal coefficients and the input projection matrix of a low dimensional chaos expansion with respect to an optimally rotated basis. We demonstrate the attractive features of our algorithm through several numerical examples including the application on Large-Eddy Simulation (LES) calculations of turbulent combustion in a HIFiRE scramjet engine.Comment: Submitted to Journal of Computational Physic
    corecore