8,839 research outputs found

    Transmission Power Scheduling for Energy Harvesting Sensor in Remote State Estimation

    Get PDF
    We study remote estimation in a wireless sensor network. Instead of using a conventional battery-powered sensor, a sensor equipped with an energy harvester which can obtain energy from the external environment is utilized. We formulate this problem into an infinite time-horizon Markov decision process and provide the optimal sensor transmission power control strategy. In addition, a sub-optimal strategy which is easier to implement and requires less computation is presented. A numerical example is provided to illustrate the implementation of the sub-optimal policy and evaluation of its estimation performance.Comment: Extended version of article to be published in the Proceedings of the 19th IFAC World Congress, 201

    Remote State Estimation with Smart Sensors over Markov Fading Channels

    Full text link
    We consider a fundamental remote state estimation problem of discrete-time linear time-invariant (LTI) systems. A smart sensor forwards its local state estimate to a remote estimator over a time-correlated MM-state Markov fading channel, where the packet drop probability is time-varying and depends on the current fading channel state. We establish a necessary and sufficient condition for mean-square stability of the remote estimation error covariance as ρ2(A)ρ(DM)<1\rho^2(\mathbf{A})\rho(\mathbf{DM})<1, where ρ()\rho(\cdot) denotes the spectral radius, A\mathbf{A} is the state transition matrix of the LTI system, D\mathbf{D} is a diagonal matrix containing the packet drop probabilities in different channel states, and M\mathbf{M} is the transition probability matrix of the Markov channel states. To derive this result, we propose a novel estimation-cycle based approach, and provide new element-wise bounds of matrix powers. The stability condition is verified by numerical results, and is shown more effective than existing sufficient conditions in the literature. We observe that the stability region in terms of the packet drop probabilities in different channel states can either be convex or concave depending on the transition probability matrix M\mathbf{M}. Our numerical results suggest that the stability conditions for remote estimation may coincide for setups with a smart sensor and with a conventional one (which sends raw measurements to the remote estimator), though the smart sensor setup achieves a better estimation performance.Comment: The paper has been accepted by IEEE Transactions on Automatic Control. Copyright may be transferred without notice, after which this version may no longer be accessibl

    Dynamic Voltage Scaling Techniques for Energy Efficient Synchronized Sensor Network Design

    Get PDF
    Building energy-efficient systems is one of the principal challenges in wireless sensor networks. Dynamic voltage scaling (DVS), a technique to reduce energy consumption by varying the CPU frequency on the fly, has been widely used in other settings to accomplish this goal. In this paper, we show that changing the CPU frequency can affect timekeeping functionality of some sensor platforms. This phenomenon can cause an unacceptable loss of time synchronization in networks that require tight synchrony over extended periods, thus preventing all existing DVS techniques from being applied. We present a method for reducing energy consumption in sensor networks via DVS, while minimizing the impact of CPU frequency switching on time synchronization. The system is implemented and evaluated on a network of 11 Imote2 sensors mounted on a truss bridge and running a high-fidelity continuous structural health monitoring application. Experimental measurements confirm that the algorithm significantly reduces network energy consumption over the same network that does not use DVS, while requiring significantly fewer re-synchronization actions than a classic DVS algorithm.unpublishedis peer reviewe
    corecore