215,752 research outputs found

    Latitude and protection affect decadal trends in reef trophic structure over a continental scale

    Get PDF
    © 2020 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. The relative roles of top-down (consumer-driven) and bottom-up (resource-driven) forcing in exploited marine ecosystems have been much debated. Examples from a variety of marine systems of exploitation-induced, top-down trophic forcing have led to a general view that human-induced predator perturbations can disrupt entire marine food webs, yet other studies that have found no such evidence provide a counterpoint. Though evidence continues to emerge, an unresolved debate exists regarding both the relative roles of top-down versus bottom-up forcing and the capacity of human exploitation to instigate top-down, community-level effects. Using time-series data for 104 reef communities spanning tropical to temperate Australia from 1992 to 2013, we aimed to quantify relationships among long-term trophic group population density trends, latitude, and exploitation status over a continental-scale biogeographic range. Specifically, we amalgamated two long-term monitoring databases of marine community dynamics to test for significant positive or negative trends in density of each of three key trophic levels (predators, herbivores, and algae) across the entire time series at each of the 104 locations. We found that trophic control tended toward bottom-up driven in tropical systems and top-down driven in temperate systems. Further, alternating long-term population trends across multiple trophic levels (a method of identifying trophic cascades), presumably due to top-down trophic forcing, occurred in roughly fifteen percent of locations where the prerequisite significant predator trends occurred. Such alternating trophic trends were significantly more likely to occur at locations with increasing predator densities over time. Within these locations, we found a marked latitudinal gradient in the prevalence of long-term, alternating trophic group trends, from rare in the tropics (<5% of cases) to relatively common in temperate areas (~45%). Lastly, the strongest trends in predator and algal density occurred in older no-take marine reserves; however, exploitation status did not affect the likelihood of alternating long-term trophic group trends occurring. Our data suggest that the type and degree of trophic forcing in this system are likely related to one or more covariates of latitude, and that ecosystem resiliency to top-down control does not universally vary in this system based on exploitation level

    An improved marine predators algorithm tuned data-driven multiple-node hormone regulation neuroendocrine-PID controller for multi-input–multi-output gantry crane system

    Get PDF
    Conventionally, researchers have favored the model-based control scheme for controlling gantry crane systems. However, this method necessitates a substantial investment of time and resources in order to develop an accurate mathematical model of the complex crane system. Recognizing this challenge, the current paper introduces a novel data-driven control scheme that relies exclusively on input and output data. Undertaking a couple of modifications to the conventional marine predators algorithm (MPA), random average marine predators algorithm (RAMPA) with tunable adaptive coefficient to control the step size ( CF) has been proposed in this paper as an enhanced alternative towards fine-tuning data-driven multiple-node hormone regulation neuroendocrine-PID (MnHR-NEPID) controller parameters for the multi-input–multi-output (MIMO) gantry crane system. First modification involved a random average location calculation within the algorithm’s updating mechanism to solve the local optima issue. The second modification then introduced tunable CF that enhanced search capacity by enabling users’ resilience towards attaining an offsetting level of exploration and exploitation phases. Effectiveness of the proposed method is evaluated based on the convergence curve and statistical analysis of the fitness function, the total norms of error and input, Wilcoxon’s rank test, time response analysis, and robustness analysis under the influence of external disturbance. Comparative findings alongside other existing metaheuristic-based algorithms confirmed excellence of the proposed method through its superior performance against the conventional MPA, particle swarm optimization (PSO), grey wolf optimizer (GWO), moth-flame optimization (MFO), multi-verse optimizer (MVO), sine-cosine algorithm (SCA), salp-swarm algorithm (SSA), slime mould algorithm (SMA), flow direction algorithm (FDA), and the formally published adaptive safe experimentation dynamics (ASED)-based methods

    DFIG versus PMSG for marine current turbine applications

    Get PDF
    Emerging technologies for marine current turbine are mainly relevant to works that have been carried out on wind turbines and ship propellers. It is then obvious that many electric generator topologies could be used for marine current turbines. As in the wind turbine context, doubly-fed induction generators and permanent magnet generators seems to be attractive solutions to be used to harness the tidal current energy. In this paper, a comparative study between these two generators type is presented and fully analyzed in terms of generated power, maintenance and operation constraints. This comparison is done for the Raz de Sein site (Brittany, France) using a multi physics modeling simulation tool. This tool integrates, in a modular environment, the resource model, the turbine hydrodynamic model and the generators models

    Generator Systems for Marine Current Turbine Applications: A Comparative Study

    Get PDF
    Emerging technologies for marine current turbines are mainly related to works that have been carried out on wind turbines and ship propellers. It is then obvious that many electric generator topologies could be used for marine current turbines. As in the wind turbine context, doubly-fed induction generators and permanent magnet generators seem to be attractive solutions for harnessing the tidal current energy. In this paper, a comparative study between these two generator types is presented and fully analyzed in terms of generated power, maintenance, and operation constraints. This comparison is done for the Raz de Sein site (Brittany, France) using a multiphysics modeling simulation tool. This tool integrates, in a modular environment, the resource model, the turbine hydrodynamicmodel, and generator models. Experiments have also been carried out to confirm the simulation results.Financement de thèse de Brest Métropole Océan

    Modeling and Control of a Marine Current Turbine Driven Doubly-Fed Induction Generator

    Get PDF
    This paper deals with the modeling and the control of a variable speed DFIG-based marine current turbine with and without tidal current speed sensor. The proposed MPPT control strategy relies on the resource and the marine turbine models that were validated by experimental data. The sensitivity of the proposed control strategy is analyzed regarding the swell effect as it is considered as the most disturbing one for the resource model. Tidal current data from the Raz de Sein (Brittany, France) are used to run simulations of a 7.5-kW prototype over various flow regimes. Simulation results are presented and fully analyzedThis work has been funded by Brest Métropole Océan

    Marine baseline and monitoring strategies for Carbon Dioxide Capture and Storage (CCS)

    Get PDF
    The QICS controlled release experiment demonstrates that leaks of carbon dioxide (CO2) gas can be detected by monitoring acoustic, geochemical and biological parameters within a given marine system. However the natural complexity and variability of marine system responses to (artificial) leakage strongly suggests that there are no absolute indicators of leakage or impact that can unequivocally and universally be used for all potential future storage sites. We suggest a multivariate, hierarchical approach to monitoring, escalating from anomaly detection to attribution, quantification and then impact assessment, as required. Given the spatial heterogeneity of many marine ecosystems it is essential that environmental monitoring programmes are supported by a temporally (tidal, seasonal and annual) and spatially resolved baseline of data from which changes can be accurately identified. In this paper we outline and discuss the options for monitoring methodologies and identify the components of an appropriate baseline survey

    Experimental Validation of a Marine Current Turbine Simulator: Application to a Permanent Magnet Synchronous Generator-Based System Second-Order Sliding Mode Control

    Get PDF
    This paper deals with the experimental validation of a Matlab-Simulink simulation tool of marine current turbine (MCT) systems. The developed simulator is intended to be used as a sizing and site evaluation tool for MCT installations. For that purpose, the simulator is evaluated within the context of speed control of a permanent magnet synchronous generatorbased (PMSG) MCT. To increase the generated power, and therefore the efficiency of an MCT, a nonlinear controller has been proposed. PMSG has been already considered for similar applications, particularly wind turbine systems using mainly PI controllers. However, such kinds of controllers do not adequately handle some of tidal resource characteristics such as turbulence and swell effects. Moreover, PMSG parameter variations should be accounted for. Therefore, a robust nonlinear control strategy, namely second-order sliding mode control, is proposed. The proposed control strategy is inserted in the simulator that accounts for the resource and the marine turbine models. Simulations using tidal current data from Raz de Sein (Brittany, France) and experiments on a 7.5-kW real-time simulator are carried out for the validation of the simulator.Thèse financée par Brest Métropole Océan

    Towards a sequence stratigraphic solution set for autogenic processes and allogenic controls: Upper Cretaceous strata, Book Cliffs, Utah, USA

    Get PDF
    Upper Cretaceous strata exposed in the Book Cliffs of east–central Utah are widely used as an archetype for the sequence stratigraphy of marginal-marine and shallow-marine deposits. Their stratal architectures are classically interpreted in terms of accommodation controls that were external to the sediment routing system (allogenic), and that forced the formation of flooding surfaces, sequence boundaries, and parasequence and parasequence-set stacking patterns. Processes internal to the sediment routing system (autogenic) and allogenic sediment supply controls provide alternatives that can plausibly explain aspects of the stratal architecture, including the following: (1) switching of wave-dominated delta lobes, expressed by the internal architecture of parasequences; (2) river avulsion, expressed by the internal architecture of multistorey fluvial sandbodies and related deposits; (3) avulsion-generated clustering of fluvial sandbodies in delta plain strata; (4) ‘autoretreat’ owing to increasing sediment storage on the delta plain as it lengthened during progradation, expressed by progradational-to-aggradational stacking of parasequences; (5) sediment supply control on the stacking of, and sediment grain-size fractionation within, parasequence sets. The various potential allogenic controls and autogenic processes are combined to form a sequence stratigraphic solution set. This approach avoids anchoring of sequence stratigraphic interpretations on a specific control and acknowledges the non-unique origin of stratal architectures
    corecore