18,440 research outputs found

    Data-driven Chance-constrained Regulation Capacity Offering for Distributed Energy Resources

    Full text link
    This paper studies the behavior of a strategic aggregator offering regulation capacity on behalf of a group of distributed energy resources (DERs, e.g. plug-in electric vehicles) in a power market. Our objective is to maximize the aggregator's revenue while controlling the risk of penalties due to poor service delivery. To achieve this goal, we propose data-driven risk-averse strategies to effectively handle uncertainties in: 1) The DER parameters (e.g., load demands and flexibilities) and 2) sub-hourly regulation signals (to the accuracy of every few seconds). We design both the day-ahead and the hour-ahead strategies. In the day-ahead model, we develop a two-stage stochastic program to roughly model the above uncertainties, which achieves computational efficiency by leveraging novel aggregate models of both DER parameters and sub-hourly regulation signals. In the hour-ahead model, we formulate a data-driven distributionally robust chance-constrained program to explicitly model the aforementioned uncertainties. This program can effectively control the quality of regulation service based on the aggregator's risk aversion. Furthermore, it learns the distributions of the uncertain parameters from empirical data so that it outperforms existing techniques, (e.g. robust optimization or traditional chance-constrained programming) in both modelling accuracy and cost of robustness. Finally, we derive a conic safe approximation for it which can be efficiently solved by commercial solvers. Numerical experiments are conducted to validate the proposed method

    Optimization under Uncertainty in the Era of Big Data and Deep Learning: When Machine Learning Meets Mathematical Programming

    Full text link
    This paper reviews recent advances in the field of optimization under uncertainty via a modern data lens, highlights key research challenges and promise of data-driven optimization that organically integrates machine learning and mathematical programming for decision-making under uncertainty, and identifies potential research opportunities. A brief review of classical mathematical programming techniques for hedging against uncertainty is first presented, along with their wide spectrum of applications in Process Systems Engineering. A comprehensive review and classification of the relevant publications on data-driven distributionally robust optimization, data-driven chance constrained program, data-driven robust optimization, and data-driven scenario-based optimization is then presented. This paper also identifies fertile avenues for future research that focuses on a closed-loop data-driven optimization framework, which allows the feedback from mathematical programming to machine learning, as well as scenario-based optimization leveraging the power of deep learning techniques. Perspectives on online learning-based data-driven multistage optimization with a learning-while-optimizing scheme is presented

    Distributionally Robust Chance Constrained Programming with Generative Adversarial Networks (GANs)

    Full text link
    This paper presents a novel deep learning based data-driven optimization method. A novel generative adversarial network (GAN) based data-driven distributionally robust chance constrained programming framework is proposed. GAN is applied to fully extract distributional information from historical data in a nonparametric and unsupervised way without a priori approximation or assumption. Since GAN utilizes deep neural networks, complicated data distributions and modes can be learned, and it can model uncertainty efficiently and accurately. Distributionally robust chance constrained programming takes into consideration ambiguous probability distributions of uncertain parameters. To tackle the computational challenges, sample average approximation method is adopted, and the required data samples are generated by GAN in an end-to-end way through the differentiable networks. The proposed framework is then applied to supply chain optimization under demand uncertainty. The applicability of the proposed approach is illustrated through a county-level case study of a spatially explicit biofuel supply chain in Illinois

    Data-driven Decision Making with Probabilistic Guarantees (Part 2): Applications of Chance-constrained Optimization in Power Systems

    Full text link
    Uncertainties from deepening penetration of renewable energy resources have posed critical challenges to the secure and reliable operations of future electric grids. Among various approaches for decision making in uncertain environments, this paper focuses on chance-constrained optimization, which provides explicit probabilistic guarantees on the feasibility of optimal solutions. Although quite a few methods have been proposed to solve chance-constrained optimization problems, there is a lack of comprehensive review and comparative analysis of the proposed methods. Part I of this two-part paper reviews three categories of existing methods to chance-constrained optimization: (1) scenario approach; (2) sample average approximation; and (3) robust optimization based methods. Data-driven methods, which are not constrained by any particular distributions of the underlying uncertainties, are of particular interest. Part II of this two-part paper provides a literature review on the applications of chance-constrained optimization in power systems. Part II also provides a critical comparison of existing methods based on numerical simulations, which are conducted on standard power system test cases.Comment: (under review) to be update

    Data-based Distributionally Robust Stochastic Optimal Power Flow, Part I: Methodologies

    Full text link
    We propose a data-based method to solve a multi-stage stochastic optimal power flow (OPF) problem based on limited information about forecast error distributions. The framework explicitly combines multi-stage feedback policies with any forecasting method and historical forecast error data. The objective is to determine power scheduling policies for controllable devices in a power network to balance operational cost and conditional value-at-risk (CVaR) of device and network constraint violations. These decisions include both nominal power schedules and reserve policies, which specify planned reactions to forecast errors in order to accommodate fluctuating renewable energy sources. Instead of assuming the uncertainties across the networks follow prescribed probability distributions, we consider ambiguity sets of distributions centered around a finite training dataset. By utilizing the Wasserstein metric to quantify differences between the empirical data-based distribution and the real unknown data-generating distribution, we formulate a multi-stage distributionally robust OPF problem to compute optimal control policies that are robust to both forecast errors and sampling errors inherent in the dataset. Two specific data-based distributionally robust stochastic OPF problems are proposed for distribution networks and transmission systems.Comment: arXiv admin note: text overlap with arXiv:1706.0426

    A data-driven robust optimization approach to scenario-based stochastic model predictive control

    Full text link
    Stochastic model predictive control (SMPC) has been a promising solution to complex control problems under uncertain disturbances. However, traditional SMPC approaches either require exact knowledge of probabilistic distributions, or rely on massive scenarios that are generated to represent uncertainties. In this paper, a novel scenario-based SMPC approach is proposed by actively learning a data-driven uncertainty set from available data with machine learning techniques. A systematical procedure is then proposed to further calibrate the uncertainty set, which gives appropriate probabilistic guarantee. The resulting data-driven uncertainty set is more compact than traditional norm-based sets, and can help reducing conservatism of control actions. Meanwhile, the proposed method requires less data samples than traditional scenario-based SMPC approaches, thereby enhancing the practicability of SMPC. Finally the optimal control problem is cast as a single-stage robust optimization problem, which can be solved efficiently by deriving the robust counterpart problem. The feasibility and stability issue is also discussed in detail. The efficacy of the proposed approach is demonstrated through a two-mass-spring system and a building energy control problem under uncertain disturbances

    Optimal corrective dispatch of uncertain virtual energy storage systems

    Full text link
    High penetrations of intermittent renewable energy resources in the power system require large balancing reserves for reliable operations. Aggregated and coordinated behind-the-meter loads can provide these fast reserves, but represent energy-constrained and uncertain reserves (in their energy state and capacity). To optimally dispatch uncertain, energy-constrained reserves, optimization-based techniques allow one to develop an appropriate trade-off between closed-loop performance and robustness of the dispatch. Therefore, this paper investigates the uncertainty associated with energy-constrained aggregations of flexible, behind-the-meter distributed energy resources (DERs). The uncertainty studied herein is associated with estimating the state of charge and the capacity of an aggregation of DERs (i.e., a virtual energy storage system or VESS). To that effect, a risk-based chance-constrained control strategy is developed that optimizes the operational risk of unexpectedly saturating the VESS against deviating generators from their scheduled set-points. The controller coordinates energy-constrained VESSs to minimize unscheduled participation of and overcome ramp-rate limited generators for balancing variability from renewable generation, while taking into account grid conditions. To illustrate the effectiveness of the proposed method, simulation-based analysis is carried out on an augmented IEEE RTS-96 network with uncertain energy resources and temperature-based dynamic line ratings

    Distributionally Robust Chance Constrained Optimal Power Flow Assuming Unimodal Distributions with Misspecified Modes

    Full text link
    Chance constrained optimal power flow (CC-OPF) formulations have been proposed to minimize operational costs while controlling the risk arising from uncertainties like renewable generation and load consumption. To solve CC-OPF, we often need access to the (true) joint probability distribution of all uncertainties, which is rarely known in practice. A solution based on a biased estimate of the distribution can result in poor reliability. To overcome this challenge, recent work has explored distributionally robust chance constraints, in which the chance constraints are satisfied over a family of distributions called the ambiguity set. Commonly, ambiguity sets are only based on moment information (e.g., mean and covariance) of the random variables; however, specifying additional characteristics of the random variables reduces conservatism and cost. Here, we consider ambiguity sets that additionally incorporate unimodality information. In practice, it is difficult to estimate the mode location from the data and so we allow it to be potentially misspecified. We formulate the problem and derive a separation-based algorithm to efficiently solve it. Finally, we evaluate the performance of the proposed approach on a modified IEEE-30 bus network with wind uncertainty and compare with other distributionally robust approaches. We find that a misspecified mode significantly affects the reliability of the solution and the proposed model demonstrates a good trade-off between cost and reliability

    A Data-Driven Distributionally Robust Bound on the Expected Optimal Value of Uncertain Mixed 0-1 Linear Programming

    Full text link
    This paper studies the expected optimal value of a mixed 0-1 programming problem with uncertain objective coefficients following a joint distribution. We assume that the true distribution is not known exactly, but a set of independent samples can be observed. Using the Wasserstein metric, we construct an ambiguity set centered at the empirical distribution from the observed samples and containing the true distribution with a high statistical guarantee. The problem of interest is to investigate the bound on the expected optimal value over the Wasserstein ambiguity set. Under standard assumptions, we reformulate the problem into a copositive program, which naturally leads to a tractable semidefinite-based approximation. We compare our approach with a moment-based approach from the literature on three applications. Numerical results illustrate the effectiveness of our approach.Comment: 29 pages, 8 figures, and 3 table

    Optimal Power Flow: An Introduction to Predictive, Distributed and Stochastic Control Challenges

    Full text link
    The Energiewende is a paradigm change that can be witnessed at latest since the political decision to step out of nuclear energy. Moreover, despite common roots in Electrical Engineering, the control community and the power systems community face a lack of common vocabulary. In this context, this paper aims at providing a systems-and-control specific introduction to optimal power flow problems which are pivotal in the operation of energy systems. Based on a concise problem statement, we introduce a common description of optimal power flow variants including multi-stage-problems and predictive control, stochastic uncertainties, and issues of distributed optimization. Moreover, we sketch open questions that might be of interest for the systems and control community
    corecore