6,519 research outputs found

    Wearable Computing for Health and Fitness: Exploring the Relationship between Data and Human Behaviour

    Get PDF
    Health and fitness wearable technology has recently advanced, making it easier for an individual to monitor their behaviours. Previously self generated data interacts with the user to motivate positive behaviour change, but issues arise when relating this to long term mention of wearable devices. Previous studies within this area are discussed. We also consider a new approach where data is used to support instead of motivate, through monitoring and logging to encourage reflection. Based on issues highlighted, we then make recommendations on the direction in which future work could be most beneficial

    Employing Environmental Data and Machine Learning to Improve Mobile Health Receptivity

    Get PDF
    Behavioral intervention strategies can be enhanced by recognizing human activities using eHealth technologies. As we find after a thorough literature review, activity spotting and added insights may be used to detect daily routines inferring receptivity for mobile notifications similar to just-in-time support. Towards this end, this work develops a model, using machine learning, to analyze the motivation of digital mental health users that answer self-assessment questions in their everyday lives through an intelligent mobile application. A uniform and extensible sequence prediction model combining environmental data with everyday activities has been created and validated for proof of concept through an experiment. We find that the reported receptivity is not sequentially predictable on its own, the mean error and standard deviation are only slightly below by-chance comparison. Nevertheless, predicting the upcoming activity shows to cover about 39% of the day (up to 58% in the best case) and can be linked to user individual intervention preferences to indirectly find an opportune moment of receptivity. Therefore, we introduce an application comprising the influences of sensor data on activities and intervention thresholds, as well as allowing for preferred events on a weekly basis. As a result of combining those multiple approaches, promising avenues for innovative behavioral assessments are possible. Identifying and segmenting the appropriate set of activities is key. Consequently, deliberate and thoughtful design lays the foundation for further development within research projects by extending the activity weighting process or introducing a model reinforcement.BMBF, 13GW0157A, Verbundprojekt: Self-administered Psycho-TherApy-SystemS (SELFPASS) - Teilvorhaben: Data Analytics and Prescription for SELFPASSTU Berlin, Open-Access-Mittel - 201

    Embedding a Grid of Load Cells into a Dining Table for Automatic Monitoring and Detection of Eating Events

    Get PDF
    This dissertation describes a “smart dining table” that can detect and measure consumption events. This work is motivated by the growing problem of obesity, which is a global problem and an epidemic in the United States and Europe. Chapter 1 gives a background on the economic burden of obesity and its comorbidities. For the assessment of obesity, we briefly describe the classic dietary assessment tools and discuss their drawback and the necessity of using more objective, accurate, low-cost, and in-situ automatic dietary assessment tools. We explain in short various technologies used for automatic dietary assessment such as acoustic-, motion-, or image-based systems. This is followed by a literature review of prior works related to the detection of weights and locations of objects sitting on a table surface. Finally, we state the novelty of this work. In chapter 2, we describe the construction of a table that uses an embedded grid of load cells to sense the weights and positions of objects. The main challenge is aligning the tops of adjacent load cells to within a few micrometer tolerance, which we accomplish using a novel inversion process during construction. Experimental tests found that object weights distributed across 4 to 16 load cells could be measured with 99.97±0.1% accuracy. Testing the surface for flatness at 58 points showed that we achieved approximately 4.2±0.5 um deviation among adjacent 2x2 grid of tiles. Through empirical measurements we determined that the table has a 40.2 signal-to-noise ratio when detecting the smallest expected intake amount (0.5 g) from a normal meal (approximate total weight is 560 g), indicating that a tiny amount of intake can be detected well above the noise level of the sensors. In chapter 3, we describe a pilot experiment that tests the capability of the table to monitor eating. Eleven human subjects were video recorded for ground truth while eating a meal on the table using a plate, bowl, and cup. To detect consumption events, we describe an algorithm that analyzes the grid of weight measurements in the format of an image. The algorithm segments the image into multiple objects, tracks them over time, and uses a set of rules to detect and measure individual bites of food and drinks of liquid. On average, each meal consisted of 62 consumption events. Event detection accuracy was very high, with an F1-score per subject of 0.91 to 1.0, and an F1 score per container of 0.97 for the plate and bowl, and 0.99 for the cup. The experiment demonstrates that our device is capable of detecting and measuring individual consumption events during a meal. Chapter 4 compares the capability of our new tool to monitor eating against previous works that have also monitored table surfaces. We completed a literature search and identified the three state-of-the-art methods to be used for comparison. The main limitation of all previous methods is that they used only one load cell for monitoring, so only the total surface weight can be analyzed. To simulate their operations, the weights of our grid of load cells were summed up to use the 2D data as 1D. Data were prepared according to the requirements of each method. Four metrics were used to evaluate the comparison: precision, recall, accuracy, and F1-score. Our method scored the highest in recall, accuracy, and F1-score; compared to all other methods, our method scored 13-21% higher for recall, 8-28% higher for accuracy, and 10-18% higher for F1-score. For precision, our method scored 97% that is just 1% lower than the highest precision, which was 98%. In summary, this dissertation describes novel hardware, a pilot experiment, and a comparison against current state-of-the-art tools. We also believe our methods could be used to build a similar surface for other applications besides monitoring consumption

    Differential Relationship between Physical Activity and Intake of Added Sugar and Nutrient-Dense Foods: A Cross-Sectional Analysis

    Get PDF
    A curvilinear relationship exists between physical activity (PA) and dietary energy intake (EI), which is reduced in moderately active when compared to inactive and highly active individuals, but the impact of PA on eating patterns remains poorly understood. Our goal was to establish the relationship between PA and intake of foods with varying energy and nutrient density. Data from the 2009–2010 United States National Health and Nutrition Examination Survey were used to include a Dietary Screener Questionnaire for estimated intakes of added sugar, fruits and vegetables, whole grains, fiber, and dairy. Participants (n = 4766; 49.7% women) were divided into sex-specific quintiles based on their habitual PA. After adjustment for age, body mass index, household income, and education, intakes were compared between PA quartiles, using the lowest activity quintile (Q1) as reference. Women in the second to fourth quintile (Q2-Q4) consumed less added sugar from sugary foods (+2 tsp/day) and from sweetened beverages (+2 tsp/day; all p \u3c 0.05 vs. Q1). In men, added sugar intake was elevated in the highest activity quintile (Q5: +3 ± 1 tsp/day, p = 0.007 vs. Q1). Fruit and vegetable intake increased (women: Q1-Q4 +0.3 ± 0.1 cup eq/day; p \u3c 0.001; men: Q1-Q3 +0.3 ± 0.1 cup eq/day, p = 0.002) and stagnated in higher quintiles. Dairy intake increased with PA only in men (Q5: +0.3 ± 0.1 cup eq/day, p \u3c 0.001 vs. Q1). Results demonstrate a differential relationship between habitual PA and dietary intakes, whereby moderate but not necessarily highest PA levels are associated with reduced added sugar and increased nutrient-dense food consumption. Future research should examine specific mechanisms of food choices at various PA levels to ensure dietary behaviors (i.e., increased sugary food intake) do not negate positive effects of PA

    Smartphone-Delivered Ecological Momentary Interventions Based on Ecological Momentary Assessments to Promote Health Behaviors: Systematic Review and Adapted Checklist for Reporting Ecological Momentary Assessment and Intervention Studies.

    Full text link
    BACKGROUND: Healthy behaviors are crucial for maintaining a person's health and well-being. The effects of health behavior interventions are mediated by individual and contextual factors that vary over time. Recently emerging smartphone-based ecological momentary interventions (EMIs) can use real-time user reports (ecological momentary assessments [EMAs]) to trigger appropriate support when needed in daily life. OBJECTIVE: This systematic review aims to assess the characteristics of smartphone-delivered EMIs using self-reported EMAs in relation to their effects on health behaviors, user engagement, and user perspectives. METHODS: We searched MEDLINE, Embase, PsycINFO, and CINAHL in June 2019 and updated the search in March 2020. We included experimental studies that incorporated EMIs based on EMAs delivered through smartphone apps to promote health behaviors in any health domain. Studies were independently screened. The PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines were followed. We performed a narrative synthesis of intervention effects, user perspectives and engagement, and intervention design and characteristics. Quality appraisal was conducted for all included studies. RESULTS: We included 19 papers describing 17 unique studies and comprising 652 participants. Most studies were quasi-experimental (13/17, 76%), had small sample sizes, and great heterogeneity in intervention designs and measurements. EMIs were most popular in the mental health domain (8/17, 47%), followed by substance abuse (3/17, 18%), diet, weight loss, physical activity (4/17, 24%), and smoking (2/17, 12%). Of the 17 studies, the 4 (24%) included randomized controlled trials reported nonstatistically significant effects on health behaviors, and 4 (24%) quasi-experimental studies reported statistically significant pre-post improvements in self-reported primary outcomes, namely depressive (P<.001) and psychotic symptoms (P=.03), drinking frequency (P<.001), and eating patterns (P=.01). EMA was commonly used to capture subjective experiences as well as behaviors, whereas sensors were rarely used. Generally, users perceived EMIs to be helpful. Common suggestions for improvement included enhancing personalization, multimedia and interactive capabilities (eg, voice recording), and lowering the EMA reporting burden. EMI and EMA components were rarely reported and were not described in a standardized manner across studies, hampering progress in this field. A reporting checklist was developed to facilitate the interpretation and comparison of findings and enhance the transparency and replicability of future studies using EMAs and EMIs. CONCLUSIONS: The use of smartphone-delivered EMIs using self-reported EMAs to promote behavior change is an emerging area of research, with few studies evaluating efficacy. Such interventions could present an opportunity to enhance health but need further assessment in larger participant cohorts and well-designed evaluations following reporting checklists. Future research should explore combining self-reported EMAs of subjective experiences with objective data passively collected via sensors to promote personalization while minimizing user burden, as well as explore different EMA data collection methods (eg, chatbots). TRIAL REGISTRATION: PROSPERO CRD42019138739; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=138739
    • …
    corecore