442 research outputs found

    Moving horizon estimation for networked systems with quantized measurements and packet dropouts

    Get PDF
    published_or_final_versio

    Robust Controller for Delays and Packet Dropout Avoidance in Solar-Power Wireless Network

    Get PDF
    Solar Wireless Networked Control Systems (SWNCS) are a style of distributed control systems where sensors, actuators, and controllers are interconnected via a wireless communication network. This system setup has the benefit of low cost, flexibility, low weight, no wiring and simplicity of system diagnoses and maintenance. However, it also unavoidably calls some wireless network time delays and packet dropout into the design procedure. Solar lighting system offers a clean environment, therefore able to continue for a long period. SWNCS also offers multi Service infrastructure solution for both developed and undeveloped countries. The system provides wireless controller lighting, wireless communications network (WI-FI/WIMAX), CCTV surveillance, and wireless sensor for weather measurement which are all powered by solar energy

    Fuzzy-logic-based control, filtering, and fault detection for networked systems: A Survey

    Get PDF
    This paper is concerned with the overview of the recent progress in fuzzy-logic-based filtering, control, and fault detection problems. First, the network technologies are introduced, the networked control systems are categorized from the aspects of fieldbuses and industrial Ethernets, the necessity of utilizing the fuzzy logic is justified, and the network-induced phenomena are discussed. Then, the fuzzy logic control strategies are reviewed in great detail. Special attention is given to the thorough examination on the latest results for fuzzy PID control, fuzzy adaptive control, and fuzzy tracking control problems. Furthermore, recent advances on the fuzzy-logic-based filtering and fault detection problems are reviewed. Finally, conclusions are given and some possible future research directions are pointed out, for example, topics on two-dimensional networked systems, wireless networked control systems, Quality-of-Service (QoS) of networked systems, and fuzzy access control in open networked systems.This work was supported in part by the National Natural Science Foundation of China under Grants 61329301, 61374039, 61473163, and 61374127, the Hujiang Foundation of China under Grants C14002 andD15009, the Engineering and Physical Sciences Research Council (EPSRC) of the UK, the Royal Society of the UK, and the Alexander von Humboldt Foundation of Germany

    Robust fault detection for networked systems with distributed sensors

    Get PDF
    Copyright [2011] IEEE. This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement of any of Brunel University's products or services. Internal or personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by writing to [email protected]. By choosing to view this document, you agree to all provisions of the copyright laws protecting it.This paper is concerned with the robust fault detection problem for a class of discrete-time networked systems with distributed sensors. Since the bandwidth of the communication channel is limited, packets from different sensors may be dropped with different missing rates during the transmission. Therefore, a diagonal matrix is introduced to describe the multiple packet dropout phenomenon and the parameter uncertainties are supposed to reside in a polytope. The aim is to design a robust fault detection filter such that, for all probabilistic packet dropouts, all unknown inputs and admissible uncertain parameters, the error between the residual (generated by the fault detection filter) and the fault signal is made as small as possible. Two parameter-dependent approaches are proposed to obtain less conservative results. The existence of the desired fault detection filter can be determined from the feasibility of a set of linear matrix inequalities that can be easily solved by the efficient convex optimization method. A simulation example on a networked three-tank system is provided to illustrate the effectiveness and applicability of the proposed techniques.This work was supported by national 973 project under Grants 2009CB320602 and 2010CB731800, and the NSFC under Grants 60721003 and 60736026
    • …
    corecore