3,065 research outputs found

    Towards agent-based crowd simulation in airports using games technology

    Get PDF
    We adapt popular video games technology for an agent-based crowd simulation in an airport terminal. To achieve this, we investigate the unique traits of airports and implement a virtual crowd by exploiting a scalable layered intelligence technique in combination with physics middleware and a socialforces approach. Our experiments show that the framework runs at interactive frame-rate and evaluate the scalability with increasing number of agents demonstrating navigation behaviour

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page

    TraInterSim: Adaptive and Planning-Aware Hybrid-Driven Traffic Intersection Simulation

    Full text link
    Traffic intersections are important scenes that can be seen almost everywhere in the traffic system. Currently, most simulation methods perform well at highways and urban traffic networks. In intersection scenarios, the challenge lies in the lack of clearly defined lanes, where agents with various motion plannings converge in the central area from different directions. Traditional model-based methods are difficult to drive agents to move realistically at intersections without enough predefined lanes, while data-driven methods often require a large amount of high-quality input data. Simultaneously, tedious parameter tuning is inevitable involved to obtain the desired simulation results. In this paper, we present a novel adaptive and planning-aware hybrid-driven method (TraInterSim) to simulate traffic intersection scenarios. Our hybrid-driven method combines an optimization-based data-driven scheme with a velocity continuity model. It guides the agent's movements using real-world data and can generate those behaviors not present in the input data. Our optimization method fully considers velocity continuity, desired speed, direction guidance, and planning-aware collision avoidance. Agents can perceive others' motion planning and relative distance to avoid possible collisions. To preserve the individual flexibility of different agents, the parameters in our method are automatically adjusted during the simulation. TraInterSim can generate realistic behaviors of heterogeneous agents in different traffic intersection scenarios in interactive rates. Through extensive experiments as well as user studies, we validate the effectiveness and rationality of the proposed simulation method.Comment: 13 pages, 12 figure

    Learning Multi-Agent Navigation from Human Crowd Data

    Get PDF
    The task of safely steering agents amidst static and dynamic obstacles has many applications in robotics, graphics, and traffic engineering. While decentralized solutions are essential for scalability and robustness, achieving globally efficient motions for the entire system of agents is equally important. In a traditional decentralized setting, each agent relies on an underlying local planning algorithm that takes as input a preferred velocity and the current state of the agent\u27s neighborhood and then computes a new velocity for the next time-step that is collision-free and as close as possible to the preferred one. Typically, each agent promotes a goal-oriented preferred velocity, which can result in myopic behaviors as actions that are locally optimal for one agent is not necessarily optimal for the global system of agents. In this thesis, we explore a human-inspired approach for efficient multi-agent navigation that allows each agent to intelligently adapt its preferred velocity based on feedback from the environment. Using supervised learning, we investigate different egocentric representations of the local conditions that the agents face and train various deep neural network architectures on extensive collections of human trajectory datasets to learn corresponding life-like velocities. During simulation, we use the learned velocities as high-level, preferred velocities signals passed as input to the underlying local planning algorithm of the agents. We evaluate our proposed framework using two state-of-the-art local methods, the ORCA method, and the PowerLaw method. Qualitative and quantitative results on a range of scenarios show that adapting the preferred velocity results in more time- and energy-efficient navigation policies, allowing agents to reach their destinations faster as compared to agents simulated with vanilla ORCA and PowerLaw
    corecore